Abstract:
Systems, methods, and computer programs are disclosed for reducing motion-to-photon latency and memory bandwidth in a virtual reality display system. An exemplary method involves receiving sensor data from one or more sensors tracking translational and rotational motion of a user for a virtual reality application. An updated position of the user is computed based on the received sensor data. The speed and acceleration of the user movement may be computed based on the sensor data. The updated position, the speed, and the acceleration may be provided to a warp engine configured to update a rendered image before sending to a virtual reality display based on one or more of the updated position, the speed, and the acceleration.
Abstract:
Techniques for display rotation are disclosed. In one aspect, raw angular motion sensor (AMS) data can be accessed. A motion state of the mobile device can be determined based at least in part on processing the raw AMS data. AMS data can be further processed to determine whether to perform a rotation of the display image based at least in part on applying at least one pre-defined criterion to the AMS data.