Abstract:
Enhanced cryptographic techniques are provided which facilitate higher data rates in a wireless communication system. In one aspect, improvements to the ZUC algorithm are disclosed which can reduce the number of logical operations involved key stream generation, reduce computational burden on a mobile device implementing ZUC, and extend battery life. The disclosed techniques include, for instance, receiving, at a wireless communication apparatus, a data stream having data packets for ciphering or deciphering. The wireless apparatus can generate a cipher key for the cryptographic function, determine a starting address of a first data packet in the data stream and shift the cipher key to align with the starting address of the first data packet. Once aligned, the processing apparatus applies the cryptographic function to a first block of the first data packet using the shifted cipher key and manages a remaining portion of the cipher key to handle arbitrarily aligned data across multiple packets.
Abstract:
Application of a ZUC cryptographic functions in wireless communication includes receiving a data stream at the wireless communication apparatus and applying the ZUC cryptographic function to the data stream. The ZUC cryptographic function includes generating at least one multi-byte pseudo-random number that provides an index to one of a plurality of substitution boxes. Each of the substitution boxes is further based on one or more normative substitution boxes. The ZUC cryptographic function further includes retrieving a value from each of the substitution boxes using each byte of the multi-byte pseudo-random number, assembling the retrieved values into at least one substituted values, and generating at least one key value based on the substituted values, wherein the key value is used in applying the ZUC cryptographic function to the data stream. The method also includes processing the data stream after application of the ZUC cryptographic function.
Abstract:
A method of managing a stack includes detecting, by a stack manager of a processor, that a size of a frame to be allocated exceeds available space of a first stack. The first stack is used by a particular task executing at the processor. The method also includes designating a second stack for use by the particular task. The method further includes copying metadata associated with the first stack to the second stack. The metadata enables the stack manager to transition from the second stack to the first stack upon detection that the second stack is no longer in use by the particular task. The method also includes allocating the frame in the second stack.
Abstract:
Enhanced cryptographic techniques are provided which facilitate higher data rates in a wireless communication system. In one aspect, improvements to the ZUC algorithm are disclosed which can reduce the number of logical operations involved key stream generation, reduce computational burden on a mobile device implementing ZUC, and extend battery life. The disclosed techniques include, for instance, receiving, at a wireless communication apparatus, a data stream having data packets for ciphering or deciphering. The wireless apparatus can generate a cipher key for the cryptographic function, determine a starting address of a first data packet in the data stream and shift the cipher key to align with the starting address of the first data packet. Once aligned, the processing apparatus applies the cryptographic function to a first block of the first data packet using the shifted cipher key and manages a remaining portion of the cipher key to handle arbitrarily aligned data across multiple packets
Abstract:
Systems and methods for branch prediction include identifying a subset of branch instructions from an execution trace of instructions executed by a processor. The identified subset of branch instructions have greater benefit from branch predictions made by a neural branch predictor than branch predictions made by a non-neural branch predictor. During runtime, the neural branch predictor is selectively used for obtaining branch predictions of the identified subset of branch instructions. For remaining branch instructions outside the identified subset of branch instructions, branch predictions are obtained from a non-neural branch predictor. Further, a weight vector matrix comprising weight vectors for the identified subset of branch instructions of the neural branch predictor is pre-trained based on the execution trace.
Abstract:
Application of a ZUC cryptographic functions in wireless communication includes receiving a data stream at the wireless communication apparatus and applying the ZUC cryptographic function to the data stream. The ZUC cryptographic function includes generating at least one multi-byte pseudo-random number that provides an index to one of a plurality of substitution boxes. Each of the substitution boxes is further based on one or more normative substitution boxes. The ZUC cryptographic function further includes retrieving a value from each of the substitution boxes using each byte of the multi-byte pseudo-random number, assembling the retrieved values into at least one substituted values, and generating at least one key value based on the substituted values, wherein the key value is used in applying the ZUC cryptographic function to the data stream. The method also includes processing the data stream after application of the ZUC cryptographic function.