Abstract:
Systems and methodologies are described herein that facilitate processing and pruning of blind decoding results (e.g., associated with grant signaling) within a wireless communication environment. As described herein, blind decoding results associated with grant signaling and/or other suitable signaling can be pruned in various manners, thereby reducing false alarm probabilities associated with such results. For example, techniques are provided herein for constraining respective decoding candidates to possible radio network temporary identifier (RNTI) values, performing validity checking on payload of respective decoding candidates, and selecting a most likely decoding candidate from a previously pruned set of candidates. Further, techniques are described herein for generating filler bits (e.g., padding bits, reserved bits, etc.) in a grant message according to a predefined pattern, thereby enabling checking of such bits to further reduce false alarm rates.
Abstract:
Aspects are disclosed for detecting a system information block (SIB) within a heterogeneous network. In one aspect, a type of scheduling information pertaining to an SIB is selected, and a parameter known to a wireless terminal is associated with the type of scheduling information. The wireless terminal then decodes the SIB by deriving the scheduling information from the known parameters, without having to decode a Physical Downlink Control Channel.
Abstract:
Systems and methodologies are described herein that facilitate processing and pruning of blind decoding results (e.g., associated with grant signaling) within a wireless communication environment. As described herein, blind decoding results associated with grant signaling and/or other suitable signaling can be pruned in various manners, thereby reducing false alarm probabilities associated with such results. For example, techniques are provided herein for constraining respective decoding candidates to possible radio network temporary identifier (RNTI) values, performing validity checking on payload of respective decoding candidates, and selecting a most likely decoding candidate from a previously pruned set of candidates. Further, techniques are described herein for generating filler bits (e.g., padding bits, reserved bits, etc.) in a grant message according to a predefined pattern, thereby enabling checking of such bits to further reduce false alarm rates.