Neural network for image processing

    公开(公告)号:US10510146B2

    公开(公告)日:2019-12-17

    申请号:US15422395

    申请日:2017-02-01

    Abstract: A method for processing an input in an artificial neural network (ANN) includes receiving, at an operator layer of a set of operator layers, a first feature value based on the input from a decoder convolutional layer of a decoder. The operator layer also receives a second feature value based on the input from an encoder convolutional layer of a encoder. The method also includes determining, at the operator layer, a third feature value based on the input by performing an element-wise operation with the first feature value based on the input and the second feature value based on the input. The method transmits, from the operator layer, the third feature value based on the input to an encoder layer that is subsequent to the encoder convolutional layer. The method generates an output based on the third feature value based on the input.

    Hyper-parameter selection for deep convolutional networks

    公开(公告)号:US10275719B2

    公开(公告)日:2019-04-30

    申请号:US14848296

    申请日:2015-09-08

    Abstract: Hyper-parameters are selected for training a deep convolutional network by selecting a number of network architectures as part of a database. Each of the network architectures includes one or more local logistic regression layer and is trained to generate a corresponding validation error that is stored in the database. A threshold error for identifying a good set of network architectures and a bad set of network architectures may be estimated based on validation errors in the database. The method also includes choosing a next potential hyper-parameter, corresponding to a next network architecture, based on a metric that is a function of the good set of network architectures. The method further includes selecting a network architecture, from among next network architectures, with a lowest validation error.

Patent Agency Ranking