Abstract:
Apparatus and methods for developing parallel networks. Parallel network design may comprise a general purpose language (GPC) code portion and a network description (ND) portion. GPL tools may be utilized in designing the network. The GPL tools may be configured to produce network specification language (NSL) engine adapted to generate hardware optimized machine executable code corresponding to the network description. The developer may be enabled to describe a parameter of the network. The GPC portion may be automatically updated consistent with the network parameter value. The GPC byte code may be introspected by the NSL engine to provide the underlying source code that may be automatically reinterpreted to produce the hardware optimized machine code. The optimized machine code may be executed in parallel.
Abstract:
Apparatus and methods for implementing learning by robotic devices. Attention of the robot may be manipulated by use of a spot-light device illuminating a portion of the aircraft undergoing inspection in order to indicate to inspection robot target areas requiring more detailed inspection. The robot guidance may be aided by way of an additional signal transmitted by the agent to the robot indicating that the object has been illuminated and attention switch may be required. The robot may initiate a search for the signal reflected by the illuminated area requiring its attention. Responsive to detecting the illuminated object and receipt of the additional signal, the robot may develop an association between the two events and the inspection task thereby storing a robotic context. The context of one robot may be shared with other devices in lieu of training so as to enable other devices to perform the task.