ANOMALOUS USER ACCOUNT DETECTION SYSTEMS AND METHODS

    公开(公告)号:US20220286472A1

    公开(公告)日:2022-09-08

    申请号:US17685687

    申请日:2022-03-03

    Abstract: Autoencoder-based anomaly detection methods have been used in identifying anomalous users from large-scale enterprise logs with the assumption that adversarial activities do not follow past habitual patterns. Most existing approaches typically build models by reconstructing single-day and individual-user behaviors. However, without capturing long-term signals and group-correlation signals, the models cannot identify low-signal yet long-lasting threats, and will incorrectly report many normal users as anomalies on busy days, which, in turn, leads to a high false positive rate. A method is provided based on compound behavior, which takes into consideration long-term patterns and group behaviors. The provided method leverages a novel behavior representation and an ensemble of deep autoencoders and produces an ordered investigation list.

    Anomalous user account detection systems and methods

    公开(公告)号:US11991196B2

    公开(公告)日:2024-05-21

    申请号:US17685687

    申请日:2022-03-03

    CPC classification number: H04L63/1425 H04L63/0876

    Abstract: Autoencoder-based anomaly detection methods have been used in identifying anomalous users from large-scale enterprise logs with the assumption that adversarial activities do not follow past habitual patterns. Most existing approaches typically build models by reconstructing single-day and individual-user behaviors. However, without capturing long-term signals and group-correlation signals, the models cannot identify low-signal yet long-lasting threats, and will incorrectly report many normal users as anomalies on busy days, which, in turn, leads to a high false positive rate. A method is provided based on compound behavior, which takes into consideration long-term patterns and group behaviors. The provided method leverages a novel behavior representation and an ensemble of deep autoencoders and produces an ordered investigation list.

Patent Agency Ranking