摘要:
Provided is a multi-channel LED driver circuit, including a power supply device for providing an independent voltage source; a plurality of regulating circuits connected to the power supply device and the light light-emitting diode arrays for receiving a voltage from the voltage source and providing a plurality of output currents to the light-emitting diode arrays, and thereby generating a plurality of error signals
摘要:
A driving circuit system for a gas discharge lamp includes a power circuit having a switch for converting an input voltage into a lamp voltage for driving the gas discharge lamp, a lamp current detecting circuit connected to the power circuit or the gas discharge lamp for detecting a lamp current, a feedback circuit connected to the lamp current detecting circuit for generating a lamp current feedback signal, a constant power control circuit for generating a corrected current reference signal, and a power control circuit connected to the feedback circuit, the constant power control circuit, and the switch of the power circuit for generating a first modulating signal in accordance with the lamp current feedback signal and the corrected current reference signal for driving the switch to turn on or off, thereby substantially maintaining a lamp power of the gas discharge lamp at a constant value.
摘要:
A method of controlling an ignition circuit to output an excitation voltage is disclosed. The ignition circuit is used to excite a discharge lamp and includes a transformer and a switch element which is connected to a primary winding of the transformer. The method of controlling the ignition circuit comprises steps of: (a) receiving a control signal which is set in accordance with a waveform characteristic of a predetermined excitation voltage to control an impedance of the switch element; (b) controlling a primary current in the primary winding or a primary voltage across the primary winding of the transformer by controlling the impedance of the switch element; and (c) generating the excitation voltage by the secondary winding of the transformer in accordance with the primary current or the primary voltage so as to excite the discharge lamp.
摘要:
A high intensity discharge lamp (HID) control circuit and method are provided in the present invention. The circuit includes a first winding and a second winding, both of which are coupled with a series-connected inductor of an HID lamp circuit; a current zero point detector for detecting an inductor current zero crossing signal in the HID lamp circuit; an inductor current signal generator for generating an inductor current signal in the circuit to indicate a current value of the HID lamp; a modulator having input terminals connected to the current zero point detector and the inductor current signal generator, respectively, and an output terminal connected to a driving circuit for the HID lamp; and the driving circuit for driving switches in the HID lamp control circuit.
摘要:
A method and circuit for improving the crest factor of the gas discharge lamp. The method includes: the signal of the gas discharge lamp can be sampled to get a status signal; whether the present stage of the gas discharge lamp is at warm up stage or constant power stage can be judged based on the result of comparison between the status signal and a preset value; preset parameters can be selected based on the stage of the gas discharge lamp, the first parameter can be selected when the gas discharge lamp is at a warm up stage, and the second parameter can be selected when the gas discharge lamp is at a constant power stage; a control signal can be outputted during the lamp current commutation based on the selected first or second parameter to improve the crest factor of the gas discharge lamp.
摘要:
A method of controlling an ignition circuit to output an excitation voltage is disclosed. The ignition circuit is used to excite a discharge lamp and includes a transformer and a switch element which is connected to a primary winding of the transformer. The method of controlling the ignition circuit comprises steps of: (a) receiving a control signal which is set in accordance with a waveform characteristic of a predetermined excitation voltage to control an impedance of the switch element; (b) controlling a primary current in the primary winding or a primary voltage across the primary winding of the transformer by controlling the impedance of the switch element; and (c) generating the excitation voltage by the secondary winding of the transformer in accordance with the primary current or the primary voltage so as to excite the discharge lamp.
摘要:
Provided is a lamp ballast having a filament heating apparatus for gas discharge lamp, including a PFC converter for receiving an AC input voltage and converting the AC input voltage into a DC bus voltage; an inverter connected to an output end of the PFC converter for converting the DC bus voltage into an AC output voltage for driving gas discharge lamps; and a filament heating apparatus connected to the output end of the PFC converter. The filament heating apparatus includes an auxiliary heating circuit for converting the DC bus voltage into a heating power for pre-heating the filaments of the gas discharge lamps; and a control circuit connected to the inverter and the auxiliary heating circuit for generating an auxiliary voltage according to the heating power to activate the PFC converter. After the auxiliary heating circuit has been operating for a predetermined period of time, the auxiliary heating circuit is turned off first and then the inverter is turned on; or otherwise the inverter is turned on first and then the auxiliary heating circuit is turned off.
摘要:
A method and circuit for improving the crest factor of the gas discharge lamp. The method includes: the signal of the gas discharge lamp can be sampled to get a status signal; whether the present stage of the gas discharge lamp is at warm up stage or constant power stage can be judged based on the result of comparison between the status signal and a preset value; preset parameters can be selected based on the stage of the gas discharge lamp, the first parameter can be selected when the gas discharge lamp is at a warm up stage, and the second parameter can be selected when the gas discharge lamp is at a constant power stage; a control signal can be outputted during the lamp current commutation based on the selected first or second parameter to improve the crest factor of the gas discharge lamp.
摘要:
A ballast which controls the open-circuit voltage of the ballast. The ballast includes a power factor corrector (PFC) for receiving an AC input voltage and converting the AC input voltage into a power factor corrected DC voltage; a DC/DC converter connected to the PFC and having a switch placed at a low-voltage side of the DC/DC converter for converting the DC voltage of the PFC into a DC output voltage according to the switching operation of the switch; a controller connected to a control terminal of the switch of the DC/DC converter for sending a switching control signal to control the switch; and an open-circuit voltage controller for detecting a voltage associated with the open-circuit voltage of the ballast and regulating the duty ratio or pulse density or switching frequency of the switching control signal in response to the results of the detection, thereby controlling the open-circuit voltage.
摘要:
Provided is a lamp ballast having a filament heating apparatus for gas discharge lamp, including a PFC converter for receiving an AC input voltage and converting the AC input voltage into a DC bus voltage; an inverter connected to an output end of the PFC converter for converting the DC bus voltage into an AC output voltage for driving gas discharge lamps; and a filament heating apparatus connected to the output end of the PFC converter. The filament heating apparatus includes an auxiliary heating circuit for converting the DC bus voltage into a heating power for pre-heating the filaments of the gas discharge lamps; and a control circuit connected to the inverter and the auxiliary heating circuit for generating an auxiliary voltage according to the heating power to activate the PFC converter. After the auxiliary heating circuit has been operating for a predetermined period of time, the auxiliary heating circuit is turned off first and then the inverter is turned on; or otherwise the inverter is turned on first and then the auxiliary heating circuit is turned off.