Abstract:
The invention concerns an electrical connection system, comprising a helical electrical cable (6) having a spring effect and a device (7) for storing the cable, comprising at least one first pulley (74, 73) for guiding the cable.
Abstract:
A device for detecting an insulation fault of a direct voltage source that can induce electrocution, including: first and second input terminals for the voltage source; first and third resistive dipoles connected in series between an electric ground and the second input terminal, the first resistive dipole having a resistance at least ten times higher than that of the third dipole; a second resistive dipole and a switch connected in series between the first input terminal and the electric ground; and a detection circuit connected to the terminals of the third dipole, configured to alternately open and close the switch, measure the voltage at the terminals of the third dipole, and determine the amplitude of an insulation fault according to the measured voltages.
Abstract:
A device for detecting an insulation fault of a direct voltage source that can induce electrocution, including: first and second input terminals for the voltage source; first and third resistive dipoles connected in series between an electric ground and the second input terminal, the first resistive dipole having a resistance at least ten times higher than that of the third dipole; a second resistive dipole and a switch connected in series between the first input terminal and the electric ground; and a detection circuit connected to the terminals of the third dipole, configured to alternately open and close the switch, measure the voltage at the terminals of the third dipole, and determine the amplitude of an insulation fault according to the measured voltages.
Abstract:
A device for balancing load of a storage device including plural elements connected in series. The device includes: a DC/AC converter including an inverter and a series resonant circuit connected to the output of the inverter; plural AC/DC converters, each including an input and an output that is connected to one of the respective storage elements and selectively supplies power to the output thereof; a transformer, the main winding of which is connected to the series resonant circuit and the secondary winding of which has outputs connected to an input of a respective AC/DC converter; and a control circuit configured to control the DC/AC converter at the current source when a number of outputs supplied with power is no higher than a threshold and moreover configured to control the DC/AC converter at a constant power when the number of outputs supplied with power is greater than the threshold.
Abstract:
A method for estimating insulation resistance between a terminal of a battery and an electrical ground, including: connecting a measuring circuit to one terminal of the battery, the measuring circuit including a resistance of known value and a capacitance; application of a known input signal having an input voltage; measurement of an output voltage between the ground and a point located between the resistance of known value and the capacitance; determination of a complex impedance of a dipole of the capacitance and the insulation resistance or determination of parameters of a differential equation; and determination of the insulation resistance from the parameters of the differential equation or the complex impedance.
Abstract:
A method for estimating insulation resistance between a terminal of a battery and an electrical ground, including: connecting a measuring circuit to one terminal of the battery, the measuring circuit including a resistance of known value and a capacitance; application of a known input signal having an input voltage; measurement of an output voltage between the ground and a point located between the resistance of known value and the capacitance; determination of a complex impedance of a dipole of the capacitance and the insulation resistance or determination of parameters of a differential equation; and determination of the insulation resistance from the parameters of the differential equation or the complex impedance.