摘要:
An apparatus includes a chassis having an access panel mounted on the chassis for being moved between an open position and a closed position. A plurality of mounting flanges extend from an interior surface of the access panel. An elongated latch has a first end and a second end. The first end and the second end of the latch are slidably mounted between the interior surface of the access panel and a corresponding one of the mounting flanges. The latch is movable between a latched position and an unlatched position with respect to a flange portion of the chassis in a direction generally parallel to a longitudinal axis of the latch. A plurality of contoured resilient members are mounted between the latch and the access panel for biasing the latch to the latched position. A contoured portion of one of the resilient members is inverted from a contoured portion an adjacent one of the resilient members. The apparatus has a low profile with respect to system components mounted in the chassis and with respect to a rack that the chassis is mounted in. The configuration of the resilient members provides a center-balanced force with respect to a longitudinal axis of the latch, contributing to a smooth latch operation. Furthermore, the resilient members are capable of developing a relatively high force while occupying only a relatively small space.
摘要:
A heat sink retention system and method secures a heat sink proximate to a packaged electronic component, such as central processing unit, by rotationally engaging the heat sink with a retaining structure secured to an information handling system planar, such as a motherboard. The retaining structure has an opening aligned with the packaged electronic component and securing lips that extend into the opening. The heat sink inserts into the opening and is rotated slightly to engage flanges extending from its base into the securing lips. The position of the securing lips relative to the planar and the thickness of the flanges results in the base of the secured heat sink having a predetermined clearance from the packaged electronic component. A locking detent biases the heat sink to contact the packaged electronic component and allows limited movement out to the predetermined clearance, thus allowing the absorption of shock without excessive heat sink movement.