DYNAMICALLY DETECTING EXCEPTIONS BASED ON DATA CHANGES
    2.
    发明申请
    DYNAMICALLY DETECTING EXCEPTIONS BASED ON DATA CHANGES 有权
    基于数据变化动态检测异常

    公开(公告)号:US20080189639A1

    公开(公告)日:2008-08-07

    申请号:US11670783

    申请日:2007-02-02

    IPC分类号: G06F17/30 G06F3/048

    CPC分类号: G06F17/245

    摘要: Fields contained in data expressed as tabular data having columns and rows can initially be marked as exceptions, wherein a column within a row can be the potential cause of the exception. A user configurable parameter can be utilized to change the sensitivity or allowable exceptions for each row and/or column, to increase or decrease the number of exceptions detected. As data within each field are modified, added or deleted, or when the configurable parameter is changed, the exceptions marked can be automatically updated. Such updated exceptions can be the same or different from the initially marked exceptions. As such, a user can evaluate data and determine whether various changes within the data will change various outcomes.

    摘要翻译: 包含在以列和行表格数据表示的数据中的字段最初可以被标记为异常,其中行内的列可能是异常的潜在原因。 可以使用用户可配置参数来改变每行和/或列的灵敏度或允许的异常,以增加或减少检测到的异常数量。 由于每个字段中的数据被修改,添加或删除,或者当可配置参数被更改时,可以自动更新标记的异常。 这种更新的异常可以与初始标记的异常相同或不同。 因此,用户可以评估数据并确定数据内的各种变化是否会改变各种结果。

    GOAL SEEKING USING PREDICTIVE ANALYTICS
    3.
    发明申请
    GOAL SEEKING USING PREDICTIVE ANALYTICS 失效
    使用预测分析的目标寻求

    公开(公告)号:US20080189237A1

    公开(公告)日:2008-08-07

    申请号:US11670656

    申请日:2007-02-02

    IPC分类号: G06F17/30 G06F17/10

    CPC分类号: G06N7/00

    摘要: Seeking goals in data that can be expressed as rows and columns is provided through predictive analytics. If a desired goal is achievable, the changes to the rows and/or columns that can achieve the goal are presented to a user. If the desired goal is not achievable, an error message or other indicator can be presented to the user. Predictive analytics can include a predictive algorithm, various data mining techniques, or other predictive techniques. A confidence metric of a goal-seek result can be normalized to estimate the degree of confidence that a particular change will yield the desired outcome.

    摘要翻译: 通过预测分析来提供可以表示为行和列的数据中的目标。 如果可以实现所需的目标,则可以向用户呈现可实现目标的行和/或列的更改。 如果不能实现所期望的目标,则可向用户呈现错误消息或其他指示符。 预测分析可以包括预测算法,各种数据挖掘技术或其他预测技术。 可以对目标追求结果的置信度量度进行归一化,以估计特定变化产生期望结果的置信程度。

    Systems and methods that facilitate data mining
    4.
    发明授权
    Systems and methods that facilitate data mining 失效
    促进数据挖掘的系统和方法

    公开(公告)号:US07398268B2

    公开(公告)日:2008-07-08

    申请号:US11049031

    申请日:2005-02-02

    IPC分类号: G06F17/30

    摘要: A system that facilitates data mining comprises a reception component that receives command(s) in a declarative language that relate to utilizing an output of a first data mining model as an input to a second data mining model. An implementation component analyzes the received command(s) and implements the command(s) with respect to the first and second data mining models. In another aspect of the subject invention, the reception component can receive further command(s) in a declarative language with respect to causing one or more of the first and second data mining models to output a prediction, the prediction desirably generated without prediction input, the implementation component causes the one or more of the first and second data mining models to output the prediction.

    摘要翻译: 便于数据挖掘的系统包括:接收组件,其以声明性语言接收与将第一数据挖掘模型的输出利用为第二数据挖掘模型的输入相关的命令。 实现组件分析所接收的命令并且针对第一和第二数据挖掘模型实现命令。 在本发明的另一方面,接收组件可以以声明性语言接收另外的命令,以使得第一和第二数据挖掘模型中的一个或多个输出预测,期望地产生而不具有预测输入的预测, 实现组件使第一和第二数据挖掘模型中的一个或多个输出预测。

    Detecting and displaying exceptions in tabular data
    5.
    发明授权
    Detecting and displaying exceptions in tabular data 有权
    检测并显示表格数据中的异常

    公开(公告)号:US07797264B2

    公开(公告)日:2010-09-14

    申请号:US11670735

    申请日:2007-02-02

    IPC分类号: G06F17/00

    CPC分类号: G06F17/30312

    摘要: Data expressed as tabular data having columns and rows can be analyzed and data determined to be an exception can be flagged. In addition, reasons for flagging such data as exceptions can be presented to a user to facilitate further analysis and action on the data. A predictive analysis component can utilize a clustering algorithm with predictive capabilities to autonomously analyze the data. Periodic re-analysis of the data can be performed to determine if exceptions have changed based on new or modified data.

    摘要翻译: 可以分析表示为具有列和行的表格数据的数据,并且可以标记被确定为异常的数据。 此外,可以向用户呈现标记诸如异常的数据的原因,以促进对数据的进一步分析和动作。 预测分析组件可以利用具有预测能力的聚类算法来自主分析数据。 可以执行数据的定期重新分析,以确定是否根据新的或修改的数据更改了异常。

    DETECTING AND DISPLAYING EXCEPTIONS IN TABULAR DATA
    6.
    发明申请
    DETECTING AND DISPLAYING EXCEPTIONS IN TABULAR DATA 有权
    检测和显示在数据中的例外

    公开(公告)号:US20080189238A1

    公开(公告)日:2008-08-07

    申请号:US11670735

    申请日:2007-02-02

    IPC分类号: G06F17/10 G06F17/30

    CPC分类号: G06F17/30312

    摘要: Data expressed as tabular data having columns and rows can be analyzed and data determined to be an exception can be flagged. In addition, reasons for flagging such data as exceptions can be presented to a user to facilitate further analysis and action on the data. A predictive analysis component can utilize a clustering algorithm with predictive capabilities to autonomously analyze the data. Periodic re-analysis of the data can be performed to determine if exceptions have changed based on new or modified data.

    摘要翻译: 可以分析表示为具有列和行的表格数据的数据,并且可以标记被确定为异常的数据。 此外,可以向用户呈现标记诸如异常的数据的原因,以促进对数据的进一步分析和动作。 预测分析组件可以利用具有预测能力的聚类算法来自主分析数据。 可以执行数据的定期重新分析,以确定是否根据新的或修改的数据更改了异常。

    Dynamically detecting exceptions based on data changes
    7.
    发明授权
    Dynamically detecting exceptions based on data changes 有权
    基于数据更改动态检测异常

    公开(公告)号:US07797356B2

    公开(公告)日:2010-09-14

    申请号:US11670783

    申请日:2007-02-02

    IPC分类号: G06F7/00

    CPC分类号: G06F17/245

    摘要: Fields contained in data expressed as tabular data having columns and rows can initially be marked as exceptions, wherein a column within a row can be the potential cause of the exception. A user configurable parameter can be utilized to change the sensitivity or allowable exceptions for each row and/or column, to increase or decrease the number of exceptions detected. As data within each field are modified, added or deleted, or when the configurable parameter is changed, the exceptions marked can be automatically updated. Such updated exceptions can be the same or different from the initially marked exceptions. As such, a user can evaluate data and determine whether various changes within the data will change various outcomes.

    摘要翻译: 包含在以列和行表格数据表示的数据中的字段最初可以被标记为异常,其中行内的列可能是异常的潜在原因。 可以使用用户可配置参数来改变每行和/或列的灵敏度或允许的异常,以增加或减少检测到的异常数量。 由于每个字段中的数据被修改,添加或删除,或者当可配置参数被更改时,可以自动更新标记的异常。 这种更新的异常可以与初始标记的异常相同或不同。 因此,用户可以评估数据并确定数据内的各种变化是否会改变各种结果。

    Goal seeking using predictive analytics
    8.
    发明授权
    Goal seeking using predictive analytics 失效
    目标寻求使用预测分析

    公开(公告)号:US07788200B2

    公开(公告)日:2010-08-31

    申请号:US11670656

    申请日:2007-02-02

    IPC分类号: G06F17/00

    CPC分类号: G06N7/00

    摘要: Seeking goals in data that can be expressed as rows and columns is provided through predictive analytics. If a desired goal is achievable, the changes to the rows and/or columns that can achieve the goal are presented to a user. If the desired goal is not achievable, an error message or other indicator can be presented to the user. Predictive analytics can include a predictive algorithm, various data mining techniques, or other predictive techniques. A confidence metric of a goal-seek result can be normalized to estimate the degree of confidence that a particular change will yield the desired outcome.

    摘要翻译: 通过预测分析来提供可以表示为行和列的数据中的目标。 如果可以实现所需的目标,则可以向用户呈现可实现目标的行和/或列的更改。 如果不能实现所期望的目标,则可向用户呈现错误消息或其他指示符。 预测分析可以包括预测算法,各种数据挖掘技术或其他预测技术。 可以对目标追求结果的置信度量度进行归一化,以估计特定变化产生期望结果的置信程度。

    Partitioning of data mining training set
    9.
    发明授权
    Partitioning of data mining training set 有权
    数据挖掘训练集分区

    公开(公告)号:US07756881B2

    公开(公告)日:2010-07-13

    申请号:US11371477

    申请日:2006-03-09

    IPC分类号: G06F7/00 G06F17/30

    CPC分类号: G06F17/30539

    摘要: A system that effectuates fetching a complete set of relational data into a mining services server and subsequently defining desired partitions upon the fetched data is provided. In accordance with the innovation, the data can be locally cached and partitioned therefrom. Accordingly, upon the same mining structure (e.g., cache) that has been partitioned, the novel innovation can build mining models for each partition. In other words, the innovation can employ the concept of mining structure as a data cache while manipulating only partitions of this cache in certain operations. The innovation can be employed in scenarios where a user wants to train a mining model using only data points that satisfy a particular Boolean condition, a user wants to split the training set into multiple partitions (e.g., training/testing) and/or a user wants to perform a data mining procedure known as “N-fold cross validation.”

    摘要翻译: 提供了一种能够将完整的关系数据集提取到采矿服务服务器中并随后在获取的数据上定义所需分区的系统。 根据创新,数据可以被本地缓存并从中分割。 因此,在已经被划分的相同挖掘结构(例如,高速缓存)上,新颖的创新可以为每个分区建立挖掘模型。 换句话说,创新可以采用挖掘结构的概念作为数据高速缓存,同时在某些操作中仅操纵该高速缓存的分区。 该创新可以在用户想要仅使用满足特定布尔条件的数据点来训练挖掘模型的情况下使用,用户希望将训练集合分成多个分区(例如,训练/测试)和/或用户 想要执行称为“N-fold交叉验证”的数据挖掘过程。

    Unstructured data in a mining model language
    10.
    发明授权
    Unstructured data in a mining model language 失效
    挖掘模型语言中的非结构化数据

    公开(公告)号:US07593927B2

    公开(公告)日:2009-09-22

    申请号:US11373319

    申请日:2006-03-10

    IPC分类号: G06F7/00 G06F17/30

    摘要: A standard mechanism for directly accessing unstructured data types (e.g., image, audio, video, gene sequencing and text data) in accordance with data mining operations is provided. The subject innovation can enable access to unstructured data directly from within the data mining engine or tool. Accordingly, the innovation enables multiple vendors to provide algorithms for mining unstructured data on a data mining platform (e.g., an SQL-brand server), thereby increasing adoption. As well, the subject innovation allows users to directly mine unstructured data that is not fixed-length, without pre-processing and tokenizing the data external to the data mining engine. In accordance therewith, the innovation can provide a mechanism to expand declarative language content types to include an “unstructured” data type thereby enabling a user and/or application to affirmatively designate mining data as an unstructured type.

    摘要翻译: 提供了一种用于根据数据挖掘操​​作直接访问非结构化数据类型(例如图像,音频,视频,基因排序和文本数据)的标准机制。 主题创新可以直接从数据挖掘引擎或工具中访问非结构化数据。 因此,该创新使得多个供应商能够提供用于在数据挖掘平台(例如,SQL品牌服务器)上挖掘非结构化数据的算法,从而增加采用。 此外,本创新允许用户直接挖掘不固定长度的非结构化数据,而不需要对数据挖掘引擎外部的数据进行预处理和标记。 根据此,创新可以提供一种机制来扩展声明性语言内容类型以包括“非结构化”数据类型,从而使得用户和/或应用程序肯定地将挖掘数据指定为非结构化类型。