摘要:
Crop yield may be assessed and predicted using a piecewise linear regression method with break point and various weather and agricultural parameters, such as NDVI, surface parameters (soil moisture and surface temperature) and rainfall data. These parameters may help aid in estimating and predicting crop conditions. The overall crop production environment can include inherent sources of heterogeneity and their nonlinear behavior. A non-linear multivariate optimization method may be used to derive an empirical crop yield prediction equation. Quasi-Newton method may be used in optimization for minimizing inconsistencies and errors in yield prediction. Minimization of least square loss function through iterative convergence of pre-defined empirical equation can be based on piecewise linear regression method with break point. This non-linear method can achieve acceptable lower residual values with predicted values very close to the observed values. The present invention can be modified and tailored for different crops worldwide.
摘要:
Crop yield may be assessed and predicted using a piecewise linear regression method with break point and various weather and agricultural parameters, such as NDVI, surface parameters (soil moisture and surface temperature) and rainfall data. These parameters may help aid in estimating and predicting crop conditions. The overall crop production environment can include inherent sources of heterogeneity and their nonlinear behavior. A non-linear multivariate optimization method may be used to derive an empirical crop yield prediction equation. Quasi-Newton method may be used in optimization for minimizing inconsistencies and errors in yield prediction. Minimization of least square loss function through iterative convergence of pre-defined empirical equation can be based on piecewise linear regression method with break point. This non-linear method can achieve acceptable lower residual values with predicted values very close to the observed values. The present invention can be modified and tailored for different crops worldwide.