Abstract:
An apparatus includes a module base configured to carry one or more devices to be cooled. The module base includes a cover and a heat sink connected to the cover. The cover includes first and second encapsulation layers and a thermal spreader between the encapsulation layers. The first encapsulation layer is configured to receive thermal energy from the device(s). The thermal spreader is configured to spread out at least some of the thermal energy and to provide the spread-out thermal energy to the second encapsulation layer. The heat sink is configured to receive the thermal energy through the second encapsulation layer and to transfer the thermal energy out of the module base. The first encapsulation layer includes multiple openings. The module base includes multiple tabs inserted through the openings. Each tab is configured to provide a thermal interface between at least one of the device(s) and the thermal spreader through the first encapsulation layer.
Abstract:
An air-cooled heat exchanger includes a housing having an intake for air flowing through the housing and at least one outlet for the air flowing through the housing. A set of segmented fins extend within the housing between the intake and the at least one outlet, configured to direct the air flowing through the housing. Each segment of the segmented fins has a length selected based on a throw distance for an environmental protection coating process employed to apply an environmental protection coating to surfaces of the fin segments. Access ports extend through at least one wall of the housing at locations allowing connection, when the access ports are unblocked, of electrical conductors used in the environmental protection coating process to both ends of each of the fin segments. Access port covers block each of the access ports during operation of the air-cooled heat exchanger.
Abstract:
An air-cooled heat exchanger includes a housing having an intake for air flowing through the housing and at least one outlet for the air flowing through the housing. A set of segmented fins extend within the housing between the intake and the at least one outlet, configured to direct the air flowing through the housing. Each segment of the segmented fins has a length selected based on a throw distance for an environmental protection coating process employed to apply an environmental protection coating to surfaces of the fin segments. Access ports extend through at least one wall of the housing at locations allowing connection, when the access ports are unblocked, of electrical conductors used in the environmental protection coating process to both ends of each of the fin segments. Access port covers block each of the access ports during operation of the air-cooled heat exchanger.
Abstract:
An apparatus includes a module base configured to carry one or more devices to be cooled. The module base includes a cover and a heat sink connected to the cover. The cover includes first and second encapsulation layers and a thermal spreader between the encapsulation layers. The first encapsulation layer is configured to receive thermal energy from the device(s). The thermal spreader is configured to spread out at least some of the thermal energy and to provide the spread-out thermal energy to the second encapsulation layer. The heat sink is configured to receive the thermal energy through the second encapsulation layer and to transfer the thermal energy out of the module base. The first encapsulation layer includes multiple openings. The module base includes multiple tabs inserted through the openings. Each tab is configured to provide a thermal interface between at least one of the device(s) and the thermal spreader through the first encapsulation layer.