摘要:
The instant invention is a method for making and using an apparatus for detecting neutrons. Scintillating optical fibers are fabricated by melting SiO.sub.2 with a thermal neutron capturing substance and a scintillating material in a reducing atmosphere. The melt is then drawn into fibers in an anoxic atmosphere. The fibers may then be coated and used directly in a neutron detection apparatus, or assembled into a geometrical array in a second, hydrogen-rich, scintillating material such as a polymer. Photons generated by interaction with thermal neutrons are trapped within the coated fibers and are directed to photoelectric converters. A measurable electronic signal is generated for each thermal neutron interaction within the fiber. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation. When the fibers are arranged in an array within a second scintillating material, photons generated by kinetic neutrons interacting with the second scintillating material and photons generated by thermal neutron capture within the fiber can both be directed to photoelectric converters. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation.
摘要:
The instant invention is an apparatus for determining the concentration of radioactive constituents in a test sample; such as surface soils, via rapid real-time analyses, and direct readout on location utilizing a probe made up of multiple layers of detection material used in combination with an analyzer and real-time readout unit. This is accomplished by comparing the signal received from the probe, which can discriminate between types of radiation and energies with stored patterns that are based upon experimental results. This comparison can be used in the calibration of a readout display that reads out in real-time the concentrations of constituents per given volume. For example, the concentration of constituents such as Cs-137, Sr-90, U-238 in the soil, and noble gas radionuclides such as Kr-85 in the atmosphere, can be measured in real-time, on location, without the need for laboratory analysis of samples.