Abstract:
A method and apparatus for compressing a natural gas stream is disclosed. The natural gas stream to be compressed is liquefied and then compressed by means of at least one cryogenic pump. Liquefaction of the natural gas stream to be compressed preferably takes place using the energy from a low-temperature process, specifically in the exchange of heat countercurrent to at least one medium to be heated, preferably countercurrent to a cryogenic medium.
Abstract:
A system and method of orchestrating failover operations of servers providing services to an internal computer network includes a DR server configured to execute a control script that performs a failover operation. Information needed to perform the failover operation is stored on the DR server thereby eliminating the need to store agents on each of the application's primary and backup servers. The DR server may provide a centralized location for the maintenance and update of the failover procedures for the internal network's redundant services. A failover operation may be initiated by an authorized user in communication with the internal computer network.
Abstract:
A touch sensor comprises a substrate capable of propagating acoustic waves and includes a first surface having a touch sensitive region. A first sidewall intersects the first surface along a first edge. The first edge is configured to propagate a first acoustic wave along the first edge. The first acoustic wave may be a one-dimensional edge wave. A wave converter converts the first acoustic wave to a second acoustic wave, and the first surface is configured to propagate the second acoustic wave across the touch sensitive region.
Abstract:
A method and apparatus for adapting an acoustic touchscreen controller to the operating frequency requirements of a specific touchscreen are provided. The adaptive controller can either utilize look-up tables to achieve the desired output frequency or the it can use a multi-step process in which it first determines the frequency requirements of the touchscreen, and then adjusts the burst frequency characteristics, the receiver circuit center frequency, or both in accordance with the touchscreen requirements. In one embodiment, the adaptive controller compensates for global frequency mismatch errors. In this embodiment a digital multiplier is used to modify the output of a crystal reference oscillator. The reference oscillator output is used to control the frequency of the signal from the receiving transducers and/or to generate the desired frequency of the tone burst sent to the transmitting transducers. In another embodiment that is intended to compensate for both global and local frequency variations, the adaptive controller uses a digital signal processor. The digital signal processor, based on correction values contained in memory, defines a specific center frequency which preferably varies according to the signal delay, thus taking into account variations caused by localized variations in the acoustic wave reflective array. In yet another embodiment, a non-crystal local oscillator is used to provide the reference signal in the adaptive controller. The use of such an oscillator allows the controller to be miniaturized to a sufficient extent that it can be mounted directly to a touchscreen substrate. A feedback loop is used to compensate for oscillator drift. A discriminator circuit determines the degree of deviation from the desired frequency. The output from the discriminator is used to adjust the frequency of the local oscillator such that it tracks the frequency of the touchscreen.
Abstract:
A color display is disclosed that has on an inner display surface a periodic pattern of luminescent deposits having a smallest deposit-to-adjacent-deposit pitch "P-D". The display has on an outer surface glare reduction means in the form of an undulating periodic pattern of light-scattering elements whose smallest element-to-adjacent-element pitch "P-E" is significantly less than the pitch "P-D" to avoid moire effects, but significantly greater than the longest wavelength of visible light to minimize diffraction effects. The color display according to the invention may comprise a color cathode ray tube havbing a touch panel on its front surface.
Abstract:
A system for recognizing touch positions along an axis on a surface associated with a touch control apparatus comprises a substrate having a surface capable of propagating surface acoustic waves and so characterized that a touch on that surface causes a perturbation of a surface wave passing through the region of touch. An input surface wave transducer coupled to the substrate surface launches a burst of surface waves on the surface. An output surface wave transducer coupled to the substrate detects received surface waves. Wave redirecting gratings derive wave components from the launched wave and redirect them across the substrate surface to the output transducer. The wave components are caused to traverse the axis along a progression of paths associated with different touch positions along the axis. Circuitry coupled to the input and output transducers initiates surface wave bursts across the substrate surface and detects tough-induced perturbations of the received waves indicative of the location of a touch along the axis.
Abstract:
A system for recognizing touch positions along a coordinate axis on a surface associated with a touch control apparatus comprises a substrate having a surface capable of propagating surface acoustic waves and is so characterized that a touch on that surface causes a partial absorption of energy of a surface wave passing through the region of touch. An input surface wave transducer coupled to the surface launches a burst of surface waves on the surface in a first direction parallel to the axis. An output surface wave transducer coupled to the surface receives the burst of surface waves. A first surface wave reflecting arrangement derives wave components from the launched wave and reflects them across the surface to a second wave reflecting arrangement that redirects the reflected components in a direction opposited the first direction. The reflecting arrangements collectively cause wave components to traverse the surface orthogonally to the coordinate axis along a progression of paths associated with different positions along that axis. Circuitry coupled to the input and output trnasducers initiate surface wave bursts across the substrate surface as well as dsetect touch-induced damping of the received waves. A detector serves to develop an electrical signal representative of the time occurrence of the damping and thus an indication of which of the plurality of paths was traversed by the touch-damped wave and thereby the location of the touch on the substrate surface.
Abstract:
A driver mechanism for a dot matrix printhead, including an electromagnet, an armature, and a print impact element connected to the armature by a cantilever spring, energization of the electromagnet and consequent movement of the armature to closed position driving the impact element to impact a record sheet supported on a platen; a concentrated mass load is mounted on the spring, sufficient to maintain the impact element essentially in its rest position during a substantial portion of the armature movement so that the force/travel characteristic of the spring governs movement of the impact element, with maximum force at the outset and near zero or zero force at impact. Energization of the electromagnet is interrupted when the armature closes, and a shunt circuit holds the armature closed until just before impact.
Abstract:
The invention relates to a method for filling up a storage tank (e.g., a vehicle tank) (20) with a gaseous, pressurized medium, in particular in the form of hydrogen, in which a supply tank system (2) for storing the hydrogen is connected with the storage tank (20) to be filled by way of a tank feed line (3) and a fueling valve (4), wherein, prior to filling up the storage tank (20) with aforesaid medium with the fueling valve (4) closed, a flow of the medium for cooling the tank feed line (3) is guided through the tank feed line (3) at a predefinable target temperature, and removed from the tank feed line (3) through a line (5) that branches away upstream from the fueling valve (4). In addition, the invention relates to a fueling facility (1) for filling up a storage tank (20).
Abstract:
A touch sensor comprises a substrate capable of propagating acoustic waves and includes a first surface having a touch sensitive region. A first sidewall intersects the first surface along a first edge. The first edge is configured to propagate a first acoustic wave along the first edge. The first acoustic wave may be a one-dimensional edge wave. A wave converter converts the first acoustic wave to a second acoustic wave, and the first surface is configured to propagate the second acoustic wave across the touch sensitive region.