摘要:
A method for purifying aluminum that contains impurities, the method including the step of introducing such aluminum containing impurities to a charging and melting chamber located in an electrolytic cell of the type having a porous diaphragm permeable by the electrolyte of the cell and impermeable to molten aluminum. The method includes further the steps of supplying impure aluminum from the chamber to the anode area of the cell and electrolytically transferring aluminum from the anode area to the cathode through the diaphragm while leaving impurities in the anode area, thereby purifying the aluminum introduced into the chamber. The method includes the further steps of collecting the purified aluminum at the cathode, and lowering the level of impurities concentrated in the anode area by subjecting molten aluminum and impurities in said chamber to a fractional crystallization treatment wherein eutectic-type impurities crystallize and precipitate out of the aluminum. The eutectic impurities that have crystallized are physically removed from the chamber. The aluminum in the chamber is now suited for further purification as provided in the above step of electrolytically transferring aluminum through the diaphragm.
摘要:
A process for purifying aluminum alloys comprises providing molten aluminum alloy in a container having a porous wall therein capable of containing molten aluminum in the container and being permeable by the molten electrolyte. Aluminum is electrolytically transported through the porous wall to a cathode thereby substantially separating the aluminum from alloying constituents.
摘要:
A process for purifying aluminum alloys comprises providing molten aluminum alloy in a container having a porous wall therein capable of containing molten aluminum in the container and being permeable by the molten electrolyte. Aluminum is electrolytically transported through the porous wall to a cathode thereby substantially separating the aluminum from alloying constituents.
摘要:
An aluminum alloy contains at least about 0.01 to 0.2 weight percent gallium, at least about 0.01 to 0.2 weight percent tin, and at least about 0.01 to 0.2 weight percent lead. In another embodiment, the alloy may contain at least about 0.01 to 0.2 weight percent indium in lieu of the tin. The balance of both alloys is aluminum, tolerable levels of trace metals, and impurities. Preferably, the aluminum is present in 99.9% purity. The alloy can be used advantageously as an anode in an aluminum-air battery. The gallium-tin-lead aluminum alloy when used as an anode, is preferably used with a salt water electrolyte. The gallium-indium-lead alloy, when used as an anode is preferably used with a caustic electrolyte. The aluminum base alloy may be used as an anode in a battery assembly, a housing, an anode of the present invention, a cathode, and a support means within the housing to secure the anode and cathode in a relative spaced relationship.