摘要:
A self-humidifying polymer electrolyte membrane (PEM) fuel cell assembly has an ion-exchange membrane interposed between hydrogen and oxygen diffusion layers to form a membrane electrode assembly (MEA). The MEA is in turn interposed between a pair of current collector plates having flow field channels for flowing the reactants adjacent the respective diffusion layers to produce corresponding anodic and cathodic electrochemical reactions. Various embodiments of the assembly incorporate one or more of the following features: interdigitated flow field channels, countercurrent reactant flows, opposing channel alignment, and uncatalyzed membrane hydration enhancement zones.
摘要:
A fuel cell collector plate can be provided with one or more various channel constructions for the transport of reactants to the gas diffusion layer and the removal of water therefrom. The outlet channel can be arranged to have a reduced volume compared to the inlet channel, in both interdigitated and discontinuous spiral applications. The land width between an inlet channel and outlet channel can be reduced to improved mass flow rate in regions of deleted reactant concentrations. Additionally or alternatively, the depth of the inlet channel can be reduced in the direction of flow to reduce the diffusion path as the concentration of reactant is reduced.
摘要:
A robotic fuel cell assembly system includes an end-effector, robotic workcell, and fuel cell components that have integrated design features that allow accurate component alignment during the assembly process of a fuel cell stack within a desired tolerance, while avoiding component overlap, which is a major cause of overboard gas leaks during the fuel cell operation. Accurate component alignment is achieved by electrically non-conductive alignment pins that are mounted on a fuel cell base plate, which are configured to be received by guide holes formed on the fuel cell components, and alignment holes provided by an alignment arm attached to the end-effector. The end-effector also includes a passive compliance system that includes two perpendicularly mounted miniature linear blocks and rails, which serve to compensate for the limitations in the ability of the robotic arm to move the end-effector accurately in a repeated manner.
摘要:
A fuel cell system having flow fields capable to operate like interdigitated flow fields, but in the same time allowing the removal of liquid water collected in the high-pressure channels, throughout individual exhaust passages. In a preferred embodiment, the channels follow radial-circumferential trajectories, each channel being provided with individual exhaust passages. In another preferred embodiment, each channel is provided with a valve control in both individual supply passages and individual exhaust passages allowing the system to operate alternatively as an interdigitated flow field as well as an open-channel flow field.
摘要:
A fuel cell system having flow fields capable to operate like interdigitated flow fields, but in the same time allowing the removal of liquid water collected in the high-pressure channels, throughout individual exhaust passages. In a preferred embodiment, the channels follow radial-circumferential trajectories, each channel being provided with individual exhaust passages. In another preferred embodiment, each channel is provided with a valve control in both individual supply passages and individual exhaust passages allowing the system to operate alternatively as an interdigitated flow field as well as an open-channel flow field.
摘要:
A robotic fuel cell assembly system includes an end-effector, robotic workcell, and fuel cell components that have integrated design features that allow accurate component alignment during the assembly process of a fuel cell stack within a desired tolerance, while avoiding component overlap, which is a major cause of overboard gas leaks during the fuel cell operation. Accurate component alignment is achieved by electrically non-conductive alignment pins that are mounted on a fuel cell base plate, which are configured to be received by guide holes formed on the fuel cell components, and alignment holes provided by an alignment arm attached to the end-effector. The end-effector also includes a passive compliance system that includes two perpendicularly mounted miniature linear blocks and rails, which serve to compensate for the limitations in the ability of the robotic arm to move the end-effector accurately in a repeated manner.