Predicting joint positions
    7.
    发明授权
    Predicting joint positions 有权
    预测联合职位

    公开(公告)号:US08571263B2

    公开(公告)日:2013-10-29

    申请号:US13050858

    申请日:2011-03-17

    IPC分类号: G06K9/00

    摘要: Predicting joint positions is described, for example, to find joint positions of humans or animals (or parts thereof) in an image to control a computer game or for other applications. In an embodiment image elements of a depth image make joint position votes so that for example, an image element depicting part of a torso may vote for a position of a neck joint, a left knee joint and a right knee joint. A random decision forest may be trained to enable image elements to vote for the positions of one or more joints and the training process may use training images of bodies with specified joint positions. In an example a joint position vote is expressed as a vector representing a distance and a direction of a joint position from an image element making the vote. The random decision forest may be trained using a mixture of objectives.

    摘要翻译: 例如,描述关节位置的描述是为了在图像中找到人或动物(或其部分)的联合位置,以控制计算机游戏或用于其他应用。 在一个实施例中,深度图像的图像元素进行联合位置投票,使得例如描绘躯干的一部分的图像元素可以投射颈部关节,左膝关节和右膝关节的位置。 可以对随机决策林进行训练,以使图像元素能够对一个或多个关节的位置进行投票,并且训练过程可以使用具有指定关节位置的身体的训练图像。 在一个例子中,联合立场表决被表示为表示从投票的图像元素的联合位置的距离和方向的向量。 可以使用目标混合来训练随机决策林。

    Moving object segmentation using depth images
    8.
    发明授权
    Moving object segmentation using depth images 有权
    使用深度图像移动物体分割

    公开(公告)号:US08401225B2

    公开(公告)日:2013-03-19

    申请号:US13017626

    申请日:2011-01-31

    IPC分类号: G06K9/00

    摘要: Moving object segmentation using depth images is described. In an example, a moving object is segmented from the background of a depth image of a scene received from a mobile depth camera. A previous depth image of the scene is retrieved, and compared to the current depth image using an iterative closest point algorithm. The iterative closest point algorithm includes a determination of a set of points that correspond between the current depth image and the previous depth image. During the determination of the set of points, one or more outlying points are detected that do not correspond between the two depth images, and the image elements at these outlying points are labeled as belonging to the moving object. In examples, the iterative closest point algorithm is executed as part of an algorithm for tracking the mobile depth camera, and hence the segmentation does not add substantial additional computational complexity.

    摘要翻译: 描述使用深度图像来移动物体分割。 在一个示例中,从从移动深度相机接收的场景的深度图像的背景中分割移动物体。 检索场景的先前深度图像,并使用迭代最近点算法与当前深度图像进行比较。 迭代最近点算法包括对当前深度图像和先前深度图像之间对应的一组点的确定。 在确定点集合期间,检测到一个或多个在两个深度图像之间不对应的离开点,并且将这些离散点处的图像元素标记为属于移动对象。 在示例中,迭代最近点算法作为用于跟踪移动深度相机的算法的一部分被执行,因此分割不会增加实质的额外的计算复杂度。

    Data processing using restricted boltzmann machines
    9.
    发明授权
    Data processing using restricted boltzmann machines 有权
    数据处理采用限制型螺丝刀机

    公开(公告)号:US08239336B2

    公开(公告)日:2012-08-07

    申请号:US12400388

    申请日:2009-03-09

    IPC分类号: G06F15/78

    CPC分类号: G06N3/08

    摘要: Data processing using restricted Boltzmann machines is described, for example, to pre-process continuous data and provide binary outputs. In embodiments, restricted Boltzmann machines based on either Gaussian distributions or Beta distributions are described which are able to learn and model both the mean and variance of data. In some embodiments, a stack of restricted Boltzmann machines are connected in series with outputs of one restricted Boltzmann machine providing input to the next in the stack and so on. Embodiments describe how training for each machine in the stack may be carried out efficiently and the combined system used for one of a variety of applications such as data compression, object recognition, image processing, information retrieval, data analysis and the like.

    摘要翻译: 例如,使用限制玻尔兹曼机器的数据处理被描述为预处理连续数据并提供二进制输出。 在实施例中,描述了基于高斯分布或Beta分布的限制Boltzmann机器,其能够学习和模拟数据的均值和方差。 在一些实施例中,一组受限制的波尔兹曼机器与一个限制波尔兹曼机器的输出串联连接,从而向堆叠中的下一个提供输入等等。 实施例描述了如何有效地执行堆叠中的每个机器的训练,以及用于诸如数据压缩,对象识别,图像处理,信息检索,数据分析等的各种应用之一的组合系统。

    Human body pose estimation
    10.
    发明申请
    Human body pose estimation 有权
    人体姿势估计

    公开(公告)号:US20100278384A1

    公开(公告)日:2010-11-04

    申请号:US12454628

    申请日:2009-05-20

    IPC分类号: G06K9/00 G06K9/46

    摘要: Techniques for human body pose estimation are disclosed herein. Depth map images from a depth camera may be processed to calculate a probability that each pixel of the depth map is associated with one or more segments or body parts of a body. Body parts may then be constructed of the pixels and processed to define joints or nodes of those body parts. The nodes or joints may be provided to a system which may construct a model of the body from the various nodes or joints.

    摘要翻译: 本文公开了人体姿势估计技术。 可以处理来自深度相机的深度地图图像以计算深度图的每个像素与身体的一个或多个片段或身体部分相关联的概率。 身体部位然后可以由像素构造并被处理以限定那些身体部位的关节或节点。 节点或接头可以被提供给可以从各种节点或关节构造身体的模型的系统。