High integrity partial almost-fix solution

    公开(公告)号:US11221419B1

    公开(公告)日:2022-01-11

    申请号:US16369567

    申请日:2019-03-29

    Abstract: A system and related method for determining precision navigation solutions is disclosed. The system decorrelates GPS carrier-phase ambiguities derived from multiple-source GPS information via Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) algorithms. The set of decorrelated floating-point ambiguities is used to compute protection levels and the probability of almost fix (PAF), or the probability that the partial almost-fix solution corresponding to the decorrelated ambiguities is within the region of correctly-fixed or low-error almost-fixed ambiguities. While the PAF remains below threshold and the protection levels remain below alert levels, the optimal navigation solution (floating-point, partial almost-fix, or fully fixed) is generated by fixing the decorrelated ambiguities are one at a time in the LAMBDA domain and replacing the appropriate carrier-phase ambiguities with the corresponding fixed ambiguities, reverting to the last solution if PAF reaches the threshold or if protection levels reach the alert levels.

    High integrity partial almost fix solution

    公开(公告)号:US10274606B1

    公开(公告)日:2019-04-30

    申请号:US15065260

    申请日:2016-03-09

    Abstract: A system and related methods for determining precision navigation solutions decorrelates GPS carrier-phase ambiguities derived from multiple-source GPS information via Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) algorithms, and fixes a subset of the decorrelated integer ambiguities within the LAMBDA domain. To maintain high accuracy, a partial almost fix solution is generated using the subset of the decorrelated ambiguities to be fixed in the LAMBDA domain. The subset of decorrelated ambiguities is used to compute protection levels and the probability of almost fix (PAF), or that the navigation solution corresponding to the decorrelated ambiguities is within the region of correctly-fixed or low-error almost-fixed ambiguities. The partial list of fixed ambiguities is used to generate the optimal navigation solution (floating-point, partial almost-fix, or fully fixed) while maintaining protection levels within alert limits and PAF above the desired threshold.

    SYSTEM FOR DETERMINING HIGH-INTEGRITY NAVIGATION SOLUTIONS VIA OPTIMAL PARTIAL FIXING OF FLOATING-POINT INTEGER AMBIGUITIES

    公开(公告)号:US20220120916A1

    公开(公告)日:2022-04-21

    申请号:US17564906

    申请日:2021-12-29

    Abstract: A system and for determining precision navigation solutions decorrelates GPS carrier-phase ambiguities derived from multiple-source GPS information via Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) algorithms. The set of decorrelated floating-point ambiguities is used to compute protection levels and the probability of almost fix (PAF), or the probability that the partial almost-fix solution corresponding to the decorrelated ambiguities is within the region of correctly-fixed or low-error almost-fixed ambiguities. While the PAF remains below threshold and the protection levels remain below alert levels, the optimal navigation solution (floating-point, partial almost-fix, or fully fixed) is generated by fixing the decorrelated ambiguities are one at a time in the LAMBDA domain and replacing the appropriate carrier-phase ambiguities with the corresponding fixed ambiguities, reverting to the last solution if PAF reaches the threshold or if protection levels reach the alert levels.

Patent Agency Ranking