摘要:
A system and method for controlling the radiation emissions from an x-ray tube having an anode, a cathode, and a grid is disclosed. The system and method uses a continuous high voltage across the cathode and the anode of the x-ray tube, so that a high voltage is continuously applied to the x-ray tube between the cathode and the anode. The flow of electrons between the cathode and the anode is then controlled by a pulsed high voltage to the grid, the pulsed high voltage being of substantially the same magnitude as the continuous high voltage and being switched at a frequency of about one microsecond to provide alternate the polarity of the switched high voltage to the grid, so that voltage between the cathode and the anode is switched by the voltage applied to the grid by the source of pulsed high voltage, so that soft radiation emissions from the x-ray tube are minimized or eliminated.
摘要:
A system and method for controlling the radiation emissions from an x-ray tube having an anode, a cathode, and a grid is disclosed. The system and method uses a continuous high voltage across the cathode and the anode of the x-ray tube, so that a high voltage is continuously applied to the x-ray tube between the cathode and the anode. The flow of electrons between the cathode and the anode is then controlled by a pulsed high voltage to the grid, the pulsed high voltage being of substantially the same magnitude as the continuous high voltage and being switched at a frequency of about one microsecond to provide alternate the polarity of the switched high voltage to the grid, so that voltage between the cathode and the anode is switched by the voltage applied to the grid by the source of pulsed high voltage, so that soft radiation emissions from the x-ray tube are minimized or eliminated.
摘要:
A system and method for controlling the radiation emissions from an x-ray tube having an anode, a cathode, and a grid is disclosed. The system and method uses a continuous high voltage across the cathode and the anode of the x-ray tube, so that a high voltage is continuously applied to the x-ray tube between the cathode and the anode. The flow of electrons between the cathode and the anode is then controlled by a pulsed high voltage to the grid, the pulsed high voltage being of substantially the same magnitude as the continuous high voltage and being switched at a frequency of about one microsecond to provide alternate the polarity of the switched high voltage to the grid, so that voltage between the cathode and the anode is switched by the voltage applied to the grid by the source of pulsed high voltage, so that soft radiation emissions from the x-ray tube are minimized or eliminated.
摘要:
An X-ray imaging system includes an X-ray source operable to generate an X-ray beam, an X-ray receiver receiving the X-ray beam, a power generator generating power to the X-ray source to generate the X-ray beam, a grid disposed between the X-ray source and the X-ray receiver, a first pulse generator generating a first signal comprising first multiple pulses at a first pulse rate, each of the first multiple pulses having a pulse width, and a second pulse generator coupled to the grid and the power generator. The second pulse generator is configured to generate a second signal including second multiple pulses at a second pulse rate during each pulse width of the first multiple pulses, wherein the second signal is communicated to the grid to cause the X-ray beam to pulse on and off in accordance with the second signal during imaging. A method includes generating a first pulsed fluoroscopic signal having a first plurality of pulses at a first pulse rate, based on the first pulsed fluoroscopic signal, generating a second pulsed fluoroscopic signal, wherein for each of the first plurality of pulses, a second plurality of pulses is generated at a second pulse rate, and driving voltage of the gird using the second pulsed fluoroscopic signal.
摘要:
An X-ray imaging system includes an X-ray source operable to generate an X-ray beam, an X-ray receiver receiving the X-ray beam, a power generator generating power to the X-ray source to generate the X-ray beam, a grid disposed between the X-ray source and the X-ray receiver, a first pulse generator generating a first signal comprising first multiple pulses at a first pulse rate, each of the first multiple pulses having a pulse width, and a second pulse generator coupled to the grid and the power generator. The second pulse generator is configured to generate a second signal including second multiple pulses at a second pulse rate during each pulse width of the first multiple pulses, wherein the second signal is communicated to the grid to cause the X-ray beam to pulse on and off in accordance with the second signal during imaging. A method includes generating a first pulsed fluoroscopic signal having a first plurality of pulses at a first pulse rate, based on the first pulsed fluoroscopic signal, generating a second pulsed fluoroscopic signal, wherein for each of the first plurality of pulses, a second plurality of pulses is generated at a second pulse rate, and driving voltage of the gird using the second pulsed fluoroscopic signal.