摘要:
Circuits, systems, and methods are disclosed for controlling multiple antenna receive paths in a wireless communication device. In some embodiments, the circuit may include a pair of receiving antennas, a first receive path including a VCO coupled to receive a PLL signal and a first mixer coupled to receive a first signal from the VCO and a signal from one of the antennas, and a second receive path integrated separately from the first receive path including a second mixer coupled to receive a second signal from the VCO and a signal from the other antenna. By utilizing the output of the VCO to tune the first and second mixers in the first and second receive paths to the same phase and frequency, control of the multiple antenna receive paths may be optimized.
摘要:
Circuits, systems, and methods are disclosed for controlling multiple antenna receive paths in a wireless communication device. In some embodiments, the circuit may include a pair of receiving antennas, a first receive path including a VCO coupled to receive a PLL signal and a first mixer coupled to receive a first signal from the VCO and a signal from one of the antennas, and a second receive path integrated separately from the first receive path including a second mixer coupled to receive a second signal from the VCO and a signal from the other antenna. By utilizing the output of the VCO to tune the first and second mixers in the first and second receive paths to the same phase and frequency, control of the multiple antenna receive paths may be optimized.
摘要:
Circuits, systems, and methods are disclosed for controlling multiple antenna receive paths in a wireless communication device. In some embodiments, the circuit may include a pair of receiving antennas, a first receive path including a VCO coupled to receive a PLL signal and a first mixer coupled to receive a first signal from the VCO and a signal from one of the antennas, and a second receive path integrated separately from the first receive path including a second mixer coupled to receive a second signal from the VCO and a signal from the other antenna. By utilizing the output of the VCO to tune the first and second mixers in the first and second receive paths to the same phase and frequency, control of the multiple antenna receive paths may be optimized.
摘要:
Circuits, systems, and methods are disclosed for controlling multiple antenna receive paths in a wireless communication device. In some embodiments, the circuit may include a pair of receiving antennas, a first receive path including a VCO coupled to receive a PLL signal and a first mixer coupled to receive a first signal from the VCO and a signal from one of the antennas, and a second receive path integrated separately from the first receive path including a second mixer coupled to receive a second signal from the VCO and a signal from the other antenna. By utilizing the output of the VCO to tune the first and second mixers in the first and second receive paths to the same phase and frequency, control of the multiple antenna receive paths may be optimized.
摘要:
Interference reduction is achieved within a communication device using a low complexity antenna array. In at least one embodiment, phase and magnitude values associated with an antenna element within a low complexity array are dynamically adjusted during device operation in a manner that enhances a predetermined quality criterion (e.g., SINR).
摘要:
DC offset is estimated in a wireless receiver during a period when receive energy is blocked from reaching a mixer within the receiver. The estimated DC offset value may then be used to reduce DC offset within the wireless receiver when a receive signal is subsequently being processed.
摘要:
Interference reduction is achieved within a communication device using a low complexity antenna array. In at least one embodiment, phase and magnitude values associated with an antenna element within a low complexity array are dynamically adjusted during device operation in a manner that enhances a predetermined quality criterion such as signal to interference and noise ratio (SINR).