摘要:
A method and apparatus are provided for determining the quality of a speech transmission, including temporal clipping, delay and jitter, using a carefully constructed test signal (300) and digital signal processing techniques. The test signal that is to be transmitted through a speech transmission system (100) is created (700). Then the test signal is transmitted through the speech transmission system such that the speech transmission system creates an output signal that corresponds to the input signal, as modified by the speech transmission system (702). The test signal includes multiple segments (500) of speech signals interleaved with periods of silence. The periods of silence vary in duration according to a predefined pattern. Each segment of speech signals includes multiple predefined speech samples or symbols (400, 402, 404, 406, 408, 410, 412, 414) interleaved with a plurality of silence gaps. The speech samples have a common period of duration, but the silence gaps do not. The output signal from the speech transmission system is preferably recorded (704) and analyzed to determine its quality, including temporal clipping (706). This analysis preferably includes comparing the output signal with a reference signal derived from the test signal using a cross correlation function. A processor (114) coupled to memory (116) records and analyzes the output signal.
摘要:
In systems wherein signal compression is performed using matched filters or transforms, as in the case of radar, multiple extrapolations are used to resolve beyond the limits of defraction. In one example, development of the method begins with a complex, uniformly weighted SAR or inverse SAR signal represented by a rectangle function. After performing an FFT, adaptive sidelobe reduction is carried out followed by an inverse weighting and truncation, after which the original signal is used to replace the center portion of the extrapolated signal. The signal is again transformed and sidelobe reduced, and inverse weighting and truncation are again performed, followed by the original data replacement step. The extrapolation procedure may be repeated end times, extrapolating each time by a factor K for a total extrapolation factor of K=k.sup.n.