摘要:
A cryptographic key recovery system that operates in two phases. In the first phase, the sender establishes a secret value with the receiver. For each key recovery agent, the sender generates a key-generating value as a one-way function of the secret value and encrypts the key-generating value with a public key of the key recovery agent. In the second phase, performed for a particular cryptographic session, the sender generates for each key recovery agent a key-encrypting key as a one-way function of the corresponding key-generating value and multiply encrypts the session key with the key-encrypting keys of the key recovery agents. The encrypted key-generating values and the multiply encrypted session key are transmitted together with other recovery information in a manner permitting their interception by a party seeking to recover the secret value. To recover the secret value, the party seeking recovery presents the encrypted key-generating values and public recovery information to the key recovery agents, who decrypt the key-generating values, regenerate the key-encrypting keys from the corresponding key-generating values, and provide the regenerated key-encrypting keys to the recovering party. The recovering party uses the key-encrypting keys to recover the secret value. Since the key-generating values cannot be derived from the key-encrypting keys, they may be used over a period spanning multiple cryptographic sessions without requiring new values or new public key encryptions.
摘要:
A cryptographic key recovery system that is interoperable with existing systems for establishing keys between communicating parties. The sender uses a reversible key inversion function to generate key recovery values P, Q and (optionally) R as a function of a session key and public information, so that the session key may be regenerated from the key recovery values P, Q and (if generated) R. Key recovery values P and Q are encrypted using the respective public recovery keys of a pair of key recovery agents. The encrypted P and Q values are included along with other recovery information in a session header accompanying an encrypted message sent from the sender to the receiver. The key recovery agents may recover the P and Q values for a law enforcement agent by decrypting the encrypted P and Q values in the session header, using their respective private recovery keys corresponding to the public keys. The R value, if generated, is not made available to the key recovery agents, but is ascertained using standard cryptanalytic techniques in order to provide a nontrivial work factor for law enforcement agents. The receiver checks the session header of a received message to ensure that the sender has included valid recovery information. Only when the receiver has verified that the sender has included valid recovery information does the receiver decrypt the received message.
摘要:
A cryptographic key recovery system that is interoperable with existing systems for establishing keys between communicating parties. The sender uses a reversible key inversion function to generate key recovery values P, Q and (optionally) R as a function of a session key and public information, so that the session key may be regenerated from the key recovery values P, Q and (if generated) R. Key recovery values P and Q are encrypted using the respective public recovery keys of a pair of key recovery agents. The encrypted P and Q values are included along with other recovery information in a session header accompanying an encrypted message sent from the sender to the receiver. The key recovery agents may recover the P and Q values for a law enforcement agent by decrypting the encrypted P and Q values in the session header, using their respective private recovery keys corresponding to the public keys. The R value, if generated, is not made available to the key recovery agents, but is ascertained using standard cryptanalytic techniques in order to provide a nontrivial work factor for law enforcement agents. The receiver checks the session header of a received message to ensure that the sender has included valid recovery information. Only when the receiver has verified that the sender has included valid recovery information does the receiver decrypt the received message.
摘要:
A method and apparatus for verifiably providing key recovery information to one or more trustees in a cryptographic communication system having a sender and a receiver Each communicating party has its own Diffie-Hellman key pair comprising a secret value and corresponding public value, as does each trustee The sender non-interactively generates from its own secret value and the public value held by the receiver a first shared Diffie-Hellman key pair comprising a first shared secret value, shared with the receiver but not with any trustee, and a corresponding public value. For each trustee, the sender then non-interactively generates an additional shared secret value, shared with the receiver and the trustee, from the first shared secret value and the public value corresponding to the secret value held by the trustee. The sender uses the additional shared secret value to encrypt recovery information for each trustee, which is transmitted to the receiver along with the encrypted message. Each trustee can decrypt its recovery information by regenerating its additional shared secret value from its own secret value and the public value of the first shared Diffie-Hellman key pair. The receiver can verify the correctness of the recovery information for each trustee by decrypting the information using the additional shared secret value for that trustee, without having to recreate the recovery information or perform computationally expensive public key operations.
摘要:
A cryptographic key recovery system for generating a cryptographic key for use by a pair of communicating parties while simultaneously providing for its recovery using one or more key recover agents. A plurality of m-bit shared key parts (P, Q) are generated which are shared with respective key recovery agents, while an n-bit nonshared key part (R) is generated that is not shared with any key recovery agent. The shared key parts (P, Q) are combined to generate an m-bit value which is concatenated with the nonshared key part (R) to generate an (m+n)-bit value from which an encryption key is generated. The cryptographic system has the effective work factor of an n-bit key to all of the key recovery agents acting in concert, but has the effective work factor of an (m+n)-bit to any other combination of third parties. The quantity n is selected to make authorized key recovery feasible, but not so trivial as to permit routine decryption of intercepted communications, while the quantity m is selected to make decryption by unauthorized third parties infeasible. Means are provided for verifying that the shared key parts have been shared with the key recovery agents before permitting encrypted communications using the thus generated key.
摘要:
Access to files by accessing programs, where files comprise other files, programs and data is controlled. An initial access class is assigned to each file and to each accessing program. An access class comprises an integrity access class and a secrecy access class. An integrity access class comprises rules governing modification of data contained in files and a security access class comprises rules governing disclosure of data contained in files. An integrity access class comprises a set of rules for allowing the performance of a read function, and another set of rules for allowing the performance of write/execute function. An execute function comprises transferring and chaining, where chaining comprises starting another process running at potentially different secrecy and integrity access classes. A secrecy access class comprises a set of rules for allowing the performance of a write function, and another set of rules for allowing the performance of read/execute function. The respective access classes of the target file, target program, and accessing program are compared. If the comparison results meet the security requirements, the function is performed.
摘要:
An exemplary method is provided for managing and mitigating security risks through planning. A first security-related information of a requested product is received. A second security-related information of resources that are available for producing the requested product is received. A multi-stage process with security risks managed by the first security-related information and the second security-related information is performed to produce the requested product.
摘要:
An exemplary method is provided for managing and mitigating security risks through planning. A first security-related information of a requested product is received. A second security-related information of resources that are available for producing the requested product is received. A multi-stage process with security risks managed by the first security-related information and the second security-related information is performed to produce the requested product.
摘要:
A random number generator (RNG) resistant to side channel attacks includes an activation pseudo random number generator (APRNG) having an activation output connected to an activation seed input to provide a next seed to the activation seed input. A second random number generator includes a second seed input, which receives the next seed and a random data output, which outputs random data in accordance with the next seed. An input seed memory is connected to the activation seed input and a feedback connection from the activation output so that the next seed is stored in the input seed memory to be used by the APRNG as the activation seed input at a next startup cycle.
摘要:
An access control system and method includes a risk index module which computes a risk index for a dimension contributing to risk. A boundary range defined for a parameter representing each risk index such that the parameter above the range is unacceptable, below the range is acceptable and in the range is acceptable with mitigation measures. A mitigation module determines the mitigation measures which reduce the parameter within the range by mapping the effectiveness of performing the mitigation measures to determine a residual risk after a mitigation measure has been implemented.