摘要:
One embodiment of the present invention provides a system for mitigating Raman crosstalk between downstream data and video transmission in an Ethernet passive optical network (EPON), wherein the EPON includes an optical line terminal (OLT) and one or more optical network units (ONU's). During operation, the system transmits a data stream from the OLT to the ONU's on a first wavelength that is substantially at 1490 nm. The system also transmits a video signal stream from the OLT to the ONU's on a second wavelength that is substantially at 1550 nm. The system modifies the bit sequence for the data stream to change the power spectral distribution (PSD) for the data stream, thereby reducing power spectral content in the frequency range where significant Raman crosstalk can occur between data and video signal streams.
摘要:
One embodiment of the present invention provides a method for facilitating asymmetric line rates in an Ethernet passive optical network (EPON) which includes a central node and at least one remote node. During operation, the system provides a downstream code-group clock, wherein each cycle thereof corresponds to a code group transmitted from the central node to a remote node. The system also provides an upstream code-group clock, wherein each cycle thereof corresponds to a code group received at the central node from a remote node. In addition, the system provides a multi-point control protocol (MPCP) clock, wherein the frequency ratio of the MPCP clock to the downstream code-group clock is different from the frequency ratio of the MPCP clock to the upstream code-group clock, thereby allowing the downstream transmission to be performed at a faster line rate than the upstream transmission line rate.
摘要:
In a first aspect, the method and apparatus of the present disclosure can be used to periodically and/or intermittently place one or more ONUs attached to a PON in a power savings mode so that an OTDR test can be performed. While in the power savings mode, the ONUs temporarily suspend their transmitter function and power down their upstream lasers. In a second aspect, the method and apparatus of the present disclosure can be used to coordinate the performance of OTDR during one or more periodic or intermittent discovery slots used to detect and register ONUs recently connected to the PON. Because new ONUs are infrequently connected to the PON and ONUs already registered are not permitted to transmit during the discovery windows, OTDR can be performed during these windows without impacting, to a great degree, the normal operation of the PON.
摘要:
In a first aspect, the method and apparatus of the present disclosure can be used to periodically and/or intermittently place one or more ONUs attached to a PON in a power savings mode so that an OTDR test can be performed. While in the power savings mode, the ONUs temporarily suspend their transmitter function and power down their upstream lasers. In a second aspect, the method and apparatus of the present disclosure can be used to coordinate the performance of OTDR during one or more periodic or intermittent discovery slots used to detect and register ONUs recently connected to the PON. Because new ONUs are infrequently connected to the PON and ONUs already registered are not permitted to transmit during the discovery windows, OTDR can be performed during these windows without impacting, to a great degree, the normal operation of the PON.
摘要:
A hybrid material comprising an extremely porous, carbon-bearing substrate, such as a carbon-bearing aerogel, and fullerene molecules loaded in the pores of the substrate. The hybrid compound is obtained by several approaches, including chemical vapor infiltration of fullerenes into finished carbon-containing aerogels; infiltration of fullerenes during the solvent displacement step of aerogel preparation; and addition of fullerenes to solgel starting materials.