摘要:
When the diagnostic center position and a reconstruction FOV are designated using a tomographic image, a system control device controls a top plate of a table to move from side to side and up and down so that the designated diagnostic center position reaches the center position of scanning. A scanner is provided with a plurality of compensation filters configured to adjust X-ray irradiation distribution, and the system control device selects a proper compensation filter according to the designated reconstruction FOV from among the plurality of compensation filters, switching to the selected compensation filter. The compensation filters include at least a compensation filter (size L) of wide-width X-ray irradiation distribution and a compensation filter (size S) of narrow-width X-ray irradiation distribution in a scanner-turning direction. When the designated reconstruction FOV is a predetermined threshold or less, the compensation filter is switched to the S-sized compensation filter.
摘要:
When the diagnostic center position and a reconstruction FOV are designated using a tomographic image, a system control device controls a top plate of a table to move from side to side and up and down so that the designated diagnostic center position reaches the center position of scanning. A scanner is provided with a plurality of compensation filters configured to adjust X-ray irradiation distribution, and the system control device selects a proper compensation filter according to the designated reconstruction FOV from among the plurality of compensation filters, switching to the selected compensation filter. The compensation filters include at least a compensation filter (size L) of wide-width X-ray irradiation distribution and a compensation filter (size S) of narrow-width X-ray irradiation distribution in a scanner-turning direction. When the designated reconstruction FOV is a predetermined threshold or less, the compensation filter is switched to the S-sized compensation filter.
摘要:
In order to provide a CT image forming method that can reduce an artifact caused by an image reconstructing method, and an X-ray CT apparatus using the same, an X-ray CT image forming method according to the invention is characterized in that an artifact component caused by the image reconstructing method of the projection data is obtained by calculation; the determined artifact component is subtracted from the projection data to create corrected projection data containing an inverted artifact component, and image reconstruction is executed on the corrected projection data to obtain a reconstructed image from which the artifact is reduced. The inverted artifact component is obtained as differential between the projection data and re-projection data obtained by inversely projecting a reconstructed image which is obtained by reconstructing the projection data concerned.
摘要:
There are provided an X-ray CT scan simulator and an X-ray CT apparatus in which a lesion postulated by an operator can be displayed on a simulation image and a high-precision simulation containing a postulation of occurrence of a new lesion can be performed. They comprise an image storing device for storing a reference image, a target noise value setting device for setting a target noise value of a desired image, a simulated lesion setting device for setting a condition for a simulated lesion postulated by the operator, a simulation image generating device for generating a simulation image containing a simulated lesion by using the reference image on the basis of the set target noise value and the condition for the simulated lesion, and an image display device for displaying the simulation image containing the simulated lesion.
摘要:
An X-ray CT apparatus is provided that generates a three-dimensional cross-section model from scanogram projection data of an examinee. An operator inputs a site of interest, an assumed displacement amount of the site and a desired image quality index value. A scan planning unit calculates an X-ray attenuation index from the three-dimensional cross-section model, and corrects the calculated X-ray attenuation index on the basis of the input site of interest, assumed displacement amount and image quality index value. The scan planning unit further determines a tube current modulating pattern (irradiation X-ray dose modulating pattern) on the basis of the corrected X-ray attenuation index. When scanning is executed, an X-ray tube is controlled according to the determined irradiation X-ray dose modulating pattern, and controlled so as to obtain an optimum X-ray dose.
摘要:
An X-ray CT apparatus is provided, having a function for deciding an X-ray imaging condition prior to scanning, the X-ray imaging condition allowing an acquisition of contrast to noise ratio appropriate for identifying a diagnostic object. Prior to the real scan, a three-dimensional model of an object is estimated from scanogram projection data of the object, a contrast to noise ratio enabling identification of the diagnostic object is calculated, based on the diagnostic object size set by an operator via an operating device when planning the scan, the three-dimensional model, and a standard imaging condition that is stored in a storage device. Then, an optimum irradiated X-ray condition (tube current and tube voltage) is calculated for achieving the contrast to noise ratio enabling identification. The X-ray condition being calculated is displayed in the form of information such as image SD value and exposure dose, under the calculated X-ray condition and under other condition.
摘要:
An X-ray CT apparatus is provided with an X-ray tube current modulation pattern calculation means that calculates an X-ray tube current modulation pattern based on a 3-dimensional model of an object calculated based on a scanogram image of the object, start-up shape acquisition means that acquires a start-up shape of CT values of a predetermined region of the object or CT value time differences after injecting contrast agent into the object, time contrast curve prediction means that predicts a time contrast curve indicative of a time sequential change of contrast in a diagnostic portion of the object at each slice position at a scan time based on the acquired start-up shape of the CT values or CT value time differences, object 3-dimensional model modification means that modifies a 3-dimensional model of the object based on the predicted time contrast curve, and X-ray tube electric current modulation pattern modification means that modifies the X-ray tube electric current modulation pattern based on the modified 3-dimensional model of the object.
摘要:
In order to provide a technique of obtaining an image having high diagnosability without degrading the operability in an X-ray CT apparatus that suppresses the amount of exposure of an object by controlling the amount of radiation by setting a target image SD and determining the imaging conditions (tube current) satisfying the target image SD, there is provided an X-ray CT apparatus that controls the amount of radiation according to the size of an object in consideration of the contrast by simply inputting one image quality level as a reference of the image quality level that the operator desires. The input image quality level is set as a target image SD when scanning an object having a standard size with a standard tube voltage.
摘要:
In order to provide a CT image forming method that can reduce an artifact caused by an image reconstructing method, and an X-ray CT apparatus using the same, an X-ray CT image forming method according to the invention is characterized in that an artifact component caused by the image reconstructing method of the projection data is obtained by calculation; the determined artifact component is subtracted from the projection data to create corrected projection data containing an inverted artifact component, and image reconstruction is executed on the corrected projection data to obtain a reconstructed image from which the artifact is reduced. The inverted artifact component is obtained as differential between the projection data and re-projection data obtained by inversely projecting a reconstructed image which is obtained by reconstructing the projection data concerned.
摘要:
An image analysis system that analyzes an image of an object's organ having an anatomically symmetric shape includes: an image data read means that reads image data of the organ, a memory means that is connected to the image data read means, and stores the read image data, a display means that is connected to the memory means, and displays the image data as an image, a centerline setting means that is connected to the memory means, and sets a centerline of the organ in the image displayed on the display means, a region-of-interest setting means that is connected to the memory means, and uses the centerline to set a plurality of or at least one pair of regions of interest at anatomically symmetric opposite positions in the image of the organ, and an input means that is connected to the region-of-interest setting means, and inputs conditions for setting of the regions of interest in the image.