Abstract:
A colored mirror includes a transparent substrate, a reflective metal layer and at least one interface layer between the substrate and the metal layer, wherein the interface layer includes at least one discontinuous metal layer, and at least one overlayer of a dielectric material deposited on the discontinuous layer. The discontinuous metal layer allows the adaptation of the color reflected by the mirror. The nominal thickness thereof and the type of material, as well as the nature and thickness of the dielectric overlayer, play a role in obtaining the color of the mirror.
Abstract:
A substrate is coated on one face with a thin-films stack having reflection properties in the infrared and/or in solar radiation including a single metallic functional layer, based on silver or on a metal alloy containing silver, and two antireflection coatings. The coatings each include at least one dielectric layer. The functional layer is positioned between the two antireflection coatings. At least one of the antireflection coatings includes an intermediate layer including zinc oxide Zn1O1+x with 0.05
Abstract:
A substrate is coated on one face with a thin-film multilayer including at least one functional metal film based on silver or made of silver having a thickness e of between 7 nm and 20 nm inclusive of these values, and two antireflection coatings each including at least one antireflection film. The functional film is placed between the two antireflection coatings. The multilayer includes a lower discontinuous metal film having a thickness e′ of between 0.5 nm and 5 nm inclusive of these values. The lower discontinuous metal film is located between the face and the only or first functional metal film as counted starting from the face.
Abstract:
A substrate is coated on one face with a thin-film multilayer including at least one metal functional film based on silver or made of silver having a thickness e of between 7 nm and 20 nm inclusive of these values, and two antireflection coatings. The antireflection coatings each include at least one antireflection film. The functional film is placed between the two antireflection coatings. The multilayer includes two discontinuous metal films each having a thickness e′ of between 0.5 nm and 5 nm inclusive of these values. A lower discontinuous metal film is located between the face and the only or first metal functional film as counted starting from the face and an upper discontinuous metal film located above the only or last metal functional film as counted starting from the face.
Abstract:
The invention relates to a substrate (30) coated on one face (31) with a multilayer of thin films (34) comprising at least one metal functional layer (140) based on silver or made of silver and two antireflective coatings (120, 160), the said antireflective coatings each comprising at least one antireflective layer (124, 164), the said functional layer (140) being disposed between the two antireflective coatings (120, 160), characterized in that the said metal functional layer (140) is a discontinuous layer having a surface area occupation factor in the range between 50% and 98%, or even between 53% and 83%.
Abstract:
The invention relates to a substrate (30) coated on one face (31) with a multilayer of thin films (34) comprising at least one metal functional layer (140) based on silver or made of silver and two antireflective coatings (120, 160), the said antireflective coatings each comprising at least one antireflective layer (124, 164), the said functional layer (140) being disposed between the two antireflective coatings (120, 160), characterized in that the said metal functional layer (140) is a discontinuous layer having a surface area occupation factor in the range between 50% and 98%, or even between 53% and 83%.