Abstract:
A display device includes a voltage supply unit to output a first voltage, a switch unit to selectively output the first voltage or a second voltage, a coupling member to transfer a third voltage to a display panel, and a feedback unit to selectively feed back the first voltage or the third voltage. The voltage supply unit receives a voltage based on the first voltage or the third voltage selected by the feedback unit, and the third voltage is based on the first voltage output from the switch unit. The voltage supply unit may compensate for drops in a control voltage of the display panel based on the fed back voltage.
Abstract:
An organic light emitting display device includes: a panel having sections and blocks, pixels included in the blocks to control an amount of current flowing from a first power source to a second power source via organic light emitting diodes; a data driver to receive data, and generate the data signals; a sensing unit connected to the power supply unit, and to detect an amount of current flowing in each of the blocks; and a timing controller to generate a correction value to adjust the data in view of the amount of current.
Abstract:
A display panel includes data lines and scan lines extending from a peripheral region to a display region, a plurality of data pads, and a plurality of dummy pads. First voltage lines extend from the peripheral region to the display region, and are connected to pixel circuits to provide a first voltage to light emitting devices. The display panel also has a repair line group including at least one first repair line and a plurality of second repair lines. The at least one first repair line has an end connected to a first one of the dummy pads in the peripheral region and another end connected to a corresponding one of the first voltage lines at a first position in the display region. The second repair lines are not connected to the dummy pads and the first voltage lines.
Abstract:
A display device includes a display panel, a scan driver, a first data driver, a second data driver, and a timing controller. The display panel includes a plurality of pixels. The scan driver supplies scan signals to the pixels. The first data driver is connected to first ends of data lines and supplies data voltages to the pixels through the data lines during an active period of the scan signals. The second data driver is connected to second ends of the data lines and supplies the data voltages to the pixels through the data lines during the active period of the scan signals. The timing controller controls the scan driver and the first and second data drivers. The first and second data drivers swap at least two of the data voltages based on a swap control signal.
Abstract:
A display panel includes input power supply line coupled to a power supply at one or more edge portions of the display panel, and an output power supply line coupled to the input power supply line at a predetermined portion of the display panel. The input power supply line receives the power supply voltage, and the output power supply line receives the power supply voltage from the input power supply line. The power supply is coupled to the output power supply line at the one or more edge portions of the display panel, and receives the power supply voltage from the output power supply line to adjust a voltage level of the power supply voltage based on the power supply voltage from the output power supply line. The predetermined portion is at a location different from an edge of the display panel.
Abstract:
An organic light emitting display includes a display panel, a power supply circuit, a voltage detection unit and a voltage compensation unit. The display panel includes a plurality of pixels. The power supply circuit outputs a first power source to the display panel. The voltage detection unit is positioned between the display panel and the power supply circuit, and detects a detection voltage data of the first power source output from the power supply circuit. The voltage compensation unit compares the detection voltage data with a previously stored reference voltage data, and controls the power supply circuit to output the first power source having a voltage level set based on the reference voltage data.