Abstract:
A display device includes a substrate including a bending area located between a first area and a second area. The substrate is bent in relation to a bending axis. A first wiring unit including a plurality of first wirings is arranged on the substrate to sequentially extend over the first area, the bending area, and the second area. First central axes included in each of the plurality of first wirings are spaced apart from each other by a first pitch in the bending area. A second wiring unit including a plurality of second wirings is arranged on the substrate to sequentially extend over the first area, the bending area, and the second area. Second central axes included in each of the plurality of second wirings are spaced apart from each other by a second pitch greater than the first pitch in the bending area.
Abstract:
A display device includes a substrate. The display unit is disposed on the substrate and includes a pixel circuit and a display element electrically connected to the pixel circuit. A driving circuit is disposed outside of the display unit. The driving circuit includes a thin film transistor. An inorganic insulating layer is disposed on the driving circuit. A power supply line is disposed on the inorganic insulating layer, overlaps the driving circuit, and is connected to a common electrode of the display element. An encapsulation substrate is disposed on the power supply line and faces the substrate. A sealing material is interposed between the substrate and the encapsulation substrate and overlaps the driving circuit.
Abstract:
An organic light-emitting display apparatus includes a substrate including a display area and a non-display area disposed on one side of the display area, a line unit including a plurality of lines extending in one direction and disposed on the substrate in the non-display area, an insulating film disposed on the line unit and exposing one end of the line unit, and a metal layer disposed between the line unit and the insulating film.
Abstract:
A display device includes a substrate. The display unit is disposed on the substrate and includes a pixel circuit and a display element electrically connected to the pixel circuit. A driving circuit is disposed outside of the display unit. The driving circuit includes a thin film transistor. An inorganic insulating layer is disposed on the driving circuit. A power supply line is disposed on the inorganic insulating layer, overlaps the driving circuit, and is connected to a common electrode of the display element. An encapsulation substrate is disposed on the power supply line and faces the substrate. A sealing material is interposed between the substrate and the encapsulation substrate and overlaps the driving circuit.
Abstract:
A display device includes a substrate including a bending area located between a first area and a second area. The substrate is bent in relation to a bending axis. A first wiring unit including a plurality of first wirings is arranged on the substrate to sequentially extend over the first area, the bending area, and the second area. First central axes included in each of the plurality of first wirings are spaced apart from each other by a first pitch in the bending area. A second wiring unit including a plurality of second wirings is arranged on the substrate to sequentially extend over the first area, the bending area, and the second area. Second central axes included in each of the plurality of second wirings are spaced apart from each other by a second pitch greater than the first pitch in the bending area.
Abstract:
A display device includes a substrate. The display unit is disposed on the substrate and includes a pixel circuit and a display element electrically connected to the pixel circuit. A driving circuit is disposed outside of the display unit. The driving circuit includes a thin film transistor. An inorganic insulating layer is disposed on the driving circuit. A power supply line is disposed on the inorganic insulating layer, overlaps the driving circuit, and is connected to a common electrode of the display element. An encapsulation substrate is disposed on the power supply line and faces the substrate. A sealing material is interposed between the substrate and the encapsulation substrate and overlaps the driving circuit.
Abstract:
A display device includes a substrate including a bending area located between a first area and a second area. The substrate is bent in relation to a bending axis. A first wiring unit including a plurality of first wirings is arranged on the substrate to sequentially extend over the first area, the bending area, and the second area. First central axes included in each of the plurality of first wirings are spaced apart from each other by a first pitch in the bending area. A second wiring unit including a plurality of second wirings is arranged on the substrate to sequentially extend over the first area, the bending area, and the second area. Second central axes included in each of the plurality of second wirings are spaced apart from each other by a second pitch greater than the first pitch in the bending area.
Abstract:
A display apparatus includes a substrate. A display unit is disposed on the substrate and includes a display region and a non-display region. At least one light-emitting device is disposed in the display region. First and second power supply lines, configured to supply driving power to the at least one light-emitting device, and a pad unit, are disposed in the non-display region. The first power supply line includes a first fan-out wire portion electrically connected to the pad unit, and a first extension portion electrically connected to the first fan-out wire portion. The second power supply line includes a second fan-out wire portion electrically connected to the pad unit, and a second extension portion electrically connected to the second fan-out wire portion. The first extension portion has a width W1 and the second extension portion has a width W2. The width W1 is greater than the width W2.