Abstract:
Systems and methods are provided for receiving input data to be processed by an encrypted neural network (NN) model, and encrypting the input data using a fully homomorphic encryption (FHE) public key associated with the encrypted NN model to generate encrypted input data. The systems and methods further provided for processing the encrypted input data to generate an encrypted inference output, using the encrypted NN model by, for each layer of a plurality of layers of the encrypted NN model, computing an encrypted weighted sum using encrypted parameters and a previous encrypted layer, the encrypted parameters comprising at least an encrypted weight and an encrypted bias, approximating an activation function for the level into a polynomial, and computing the approximated activation function on the encrypted weighted sum to generate an encrypted layer. The generated encrypted inference output is sent to a server system for decryption.
Abstract:
A computer-implemented method for authentication involves defining a level of trust required for access to a resource independently of any particular authentication mechanism or instance, determining levels of trust associated with a plurality of authentication instances, and selecting and combining two or more of the authentication instances to meet or exceed the required level of trust.
Abstract:
In an example embodiment, a combination of machine learning and rule-based techniques are used to automatically detect social engineering attacks in a computer system. More particularly, three phases of detection are utilized on communications in a thread or stream of communications: attack contextualization, intention classification, and security policy violation detection. Each phase of detection causes a score to be generated that is reflective of the degree of danger in the thread or stream of communications, and these scores may then be combined into a single global social engineering attack score, which then may be used to determined appropriate actions to deal with the attack if it transgresses a threshold.
Abstract:
Systems and methods are provided for receiving input data to be processed by an encrypted neural network (NN) model, and encrypting the input data using a fully homomorphic encryption (FHE) public key associated with the encrypted NN model to generate encrypted input data. The systems and methods further provided for processing the encrypted input data to generate an encrypted inference output, using the encrypted NN model by, for each layer of a plurality of layers of the encrypted NN model, computing an encrypted weighted sum using encrypted parameters and a previous encrypted layer, the encrypted parameters comprising at least an encrypted weight and an encrypted bias, approximating an activation function for the level into a polynomial, and computing the approximated activation function on the encrypted weighted sum to generate an encrypted layer. The generated encrypted inference output is sent to a server system for decryption.
Abstract:
In an example embodiment, a combination of machine learning and rule-based techniques are used to automatically detect social engineering attacks in a computer system. More particularly, three phases of detection are utilized on communications in a thread or stream of communications: attack contextualization, intention classification, and security policy violation detection. Each phase of detection causes a score to be generated that is reflective of the degree of danger in the thread or stream of communications, and these scores may then be combined into a single global social engineering attack score, which then may be used to determined appropriate actions to deal with the attack if it transgresses a threshold.
Abstract:
Fairness and output authenticity for secure distributed machine learning is provided by way of an encrypted output of a garbled circuit which is simultaneously provided to a garbler and an evaluator by an output discloser. Related systems, methods and articles of manufacture are also disclosed.
Abstract:
In an example embodiment, a combination of machine learning and rule-based techniques are used to automatically detect social engineering attacks in a computer system. More particularly, three phases of detection are utilized on communications in a thread or stream of communications: attack contextualization, intention classification, and security policy violation detection. Each phase of detection causes a score to be generated that is reflective of the degree of danger in the thread or stream of communications, and these scores may then be combined into a single global social engineering attack score, which then may be used to determined appropriate actions to deal with the attack if it transgresses a threshold.