Method for controlling an eye surgical laser and treatment device

    公开(公告)号:US11590026B2

    公开(公告)日:2023-02-28

    申请号:US16823571

    申请日:2020-03-19

    摘要: A method of controlling an eye surgical laser is disclosed for the separation of a volume body with predefined posterior and anterior interfaces from a human/animal cornea. The method including controlling the laser with a control device, the laser being configured to emit pulsed laser pulses in a predefined pattern into the cornea. The posterior and anterior interfaces of the volume body are defined by the predefined pattern and are generated by an interaction of the individual laser pulses with the cornea through photodisruption. The control device controls the laser beam such that both interfaces are generated via a continuous, uninterrupted sequence of laser pulses. A treatment device is disclosed with at least one eye surgical laser for the separation of a predefined corneal volume with predefined interfaces of a human/animal eye by photodisruption and with at least one control device for the laser(s).

    METHOD FOR CONTROLLING AN EYE SURGICAL LASER AND TREATMENT DEVICE

    公开(公告)号:US20210346198A1

    公开(公告)日:2021-11-11

    申请号:US17245994

    申请日:2021-04-30

    IPC分类号: A61F9/008

    摘要: Method for controlling an eye surgical laser (18) of a treatment device (10) for the separation of a volume body (12) with a predefined posterior interface (14) and a predefined anterior interface (16) from a human or animal cornea, comprising controlling the laser (18) by means of a control device (20) of the treatment device (10) such that it emits pulsed laser pulses in a shot sequence in a predefined pattern into the cornea, wherein the interfaces (14, 16) of the volume body (12) to be separated are defined by the predefined pattern and the interfaces (14, 16) are generated by means of an interaction of the individual laser pulses with the cornea by the generation of a plurality of cavitation bubbles generated by photodisruption, wherein the plurality of cavitation bubbles is generated along at least one cavitation bubble path, wherein at least a partial area (42) of an outer cavitation bubble path of an outer edge area (50), as radially viewed, of the volume body (12) to be separated is generated with a higher cavitation bubble density than an inner cavitation bubble path.