Abstract:
A sensor device (10) comprising a housing (48a-b), a position sensor (44) for determining an alignment, a display unit (46a-d) for displaying alignment information, and a control and evaluation unit (40) configured to use the position sensor (44) to determine the sensor device's (10) alignment, to compare the alignment with a desired alignment, and to display a comparison result using the display unit (46a-d), wherein the display unit (46a-d) comprises at least three light sources (46a-d) at positions distributed over the housing (48a-b), each light source (46a-d) being configured to assume a first display state for a correct alignment and a second display state for an alignment that is not yet correct, with the control and evaluation unit (40) further being configured to display the comparison result as display states of the light sources (46a-d).
Abstract:
An optoelectronic sensor is provided that has a front screen, a measuring unit, a movable deflection unit, and a contamination test unit moved along with the deflection unit for generating a received contamination test signal from contamination test light reflected at the front screen. In this respect, the contamination light unit has at least two contamination test light transmitters and/or at least two contamination test light receivers to form a plurality of contamination test channels and a control and evaluation unit is configured to detect the object by evaluating a received measurement signal of the measuring unit and to evaluate the contamination of the front screen by evaluating the plurality of received contamination test signals of the plurality of contamination test channels.
Abstract:
A distance-measuring sensor (10) is provided for detecting and determining the distance of objects (18) in a monitored zone comprising a transmitter (12) for transmitting transmitted pulses; a receiver (20) for generating a received signal from the transmitted pulses remitted in the monitored zone; a first comparator unit (36a) for digitizing the received signal with reference to a first threshold; and a control and evaluation unit (30) which is configured to transmit a plurality of transmitted pulses via the transmitter (12), to collect the received signals thereupon generated by the receiver (20) in a histogram and to determine a received time point from the histogram and thus to determine a measured value for the signal transit time from the sensor (10) to the object (18). In this respect, a second comparator unit (36b) is provided for digitizing the received signal with reference to a second threshold, wherein the first comparator unit (36a), the second comparator unit (36b) and the control and evaluation unit (30) are configured to acquire three digital states of a respective section of the received signal with reference to the first threshold and to weight the contributions of the section to the histogram in dependence on the digital state.