Abstract:
The invention relates to a method for producing a two-dimensional whole image of a recording region captured by means of a plurality of individual images, each having its own viewing direction and its own distance, wherein a spatial orientation of a main image plane of each individual image relative to a main image plane of the respective further individual image is determined on the basis of an overlap of the respectively captured subregions, and at least a plurality of the individual images are combined in accordance with the spatial orientations to form the whole image. The whole image area is the surface of a torus.
Abstract:
The invention relates to a method for constructing tooth surfaces of a dental prosthesis and for producing dental restorations, starting from a 3D data record of an upper mandible layout and a 3D data record of a lower mandible layout, each layout comprising a number of teeth arranged in each mandibular arch and the teeth of the upper mandible layout and the teeth of the lower mandible layout at intercuspation making contact with each other at multiple contact points. The contact surfaces are selected by approximation. Relevant surface pairs lying opposite one another are identified and are incorporated by an optimization algorithm into local minimum distances, taking into consideration surfaces that can slide past one another. This allows the desired contact points to be produced. Surfaces that have not been selected are not considered in the production of the points
Abstract:
The invention relates to a method for the virtual post-processing of a first virtual three-dimensional dental model (14) of a dental prosthesis (28), said model having been created during the planning of the prosthesis (28). The first virtual dental model (14) is processed virtually after the planning stage in an additional method step (18, 31) by adapting at least one three-dimensional aesthetic surface structure (17) already in existence to the first dental model (14) by means of a virtual tool (10) with the aid of a computer (4) and a display device (6) and by subsequently inserting said structure into the first dental model (14). The aesthetic surface structure (17) has a predetermined form, size and/or a predetermined impression depth (41), and a tooth surface (19) of the dental model (14) is at least partially replaced by the adapted aesthetic surface structure (15, 17).