Abstract:
Bypass turbojet engine comprising a fan casing (5) at the front and an exhaust casing at the rear, said turbojet engine further comprising a cold stream duct (7) which comprises an annular rear end connected to the exhaust casing and on which is positioned at least one attachment point (4) able to transmit the load from the exhaust casing to the structure of an aircraft, characterized in that a plurality of attachment points (4g, 4d) is positioned on the circumference of said annular rear end of the cold stream duct (7), said plurality of attachment points comprising either two points (4g, 4d) that are diametrically opposed on said circumference or at least three points that form a polygon through which the axis of symmetry of the cold stream duct (7) passes, and in that the turbojet engine is equipped with a rear suspension hoop (8) fixed to said attachment points and able to be fixed to the structure of the aircraft.
Abstract:
The invention relates to a bypass turbojet comprising an exhaust housing having a central hub (13) and connecting means (11) that can transmit the forces generated by the turbojet to the structure of the aircraft that it propels, said connection means being two arms extending radially from the central hub in order to cross the cold flow of said turbojet and being characterised in that they are secured to said central hub and positioned in a diametrically opposed manner in relation to each other. An additional connection means (14) extends between the hub (13) and the area (9) for securing the exhaust housing to the structure (12) of the aircraft in order to transmit the exceptional dimensioning loads, said connection means being on standby during normal use, without any transmission of force between said hub and said area.
Abstract:
The invention relates to a bypass turbojet comprising an exhaust housing having a central hub (13) and connecting means (11) that can transmit the forces generated by the turbojet to the structure of the aircraft that it propels, said connection means being two arms extending radially from the central hub in order to cross the cold flow of said turbojet and being characterized in that they are secured to said central hub and positioned in a diametrically opposed manner in relation to each other. An additional connection means (14) extends between the hub (13) and the area (9) for securing the exhaust housing to the structure (12) of the aircraft in order to transmit the exceptional dimensioning loads, said connection means being on standby during normal use, without any transmission of force between said hub and said area.
Abstract:
A method for creating a connecting element, arranged between two components of a structure, or a turbojet engine structure, which is subjected to compressive and/or tensile loadings and which includes a hollow shaft immersed, at least partially, in a stream of air flowing between the two components, the method including: dimensioning a width of the main cross section associated with the shaft of the connecting element in a direction orthogonal to the longitudinal axis of the shaft according to desired mechanical strength and desired mass, and according to characteristics of the airstream; and working an external surface of the shaft of the connecting element, at least over part of this surface, to give it a surface finish with an arithmetic mean roughness at least equal to 20 microns, to reduce drag of the connecting element thus dimensioned by comparison with a smooth connecting element of the same diameter.
Abstract:
Bypass turbojet engine comprising a fan casing (5) at the front and an exhaust casing at the rear, said turbojet engine further comprising a cold stream duct (7) which comprises an annular rear end connected to the exhaust casing and on which is positioned at least one attachment point (4) able to transmit the load from the exhaust casing to the structure of an aircraft, characterized in that a plurality of attachment points (4g, 4d) is positioned on the circumference of said annular rear end of the cold stream duct (7), said plurality of attachment points comprising either two points (4g, 4d) that are diametrically opposed on said circumference or at least three points that form a polygon through which the axis of symmetry of the cold stream duct (7) passes, and in that the turbojet engine is equipped with a rear suspension hoop (8) fixed to said attachment points and able to be fixed to the structure of the aircraft.