METHOD FOR PRODUCING DICHLORO ADDITION PRODUCT OF ALIPHATIC OLEFIN BY PHOTOCATALYSIS UNDER VISIBLE LIGHT

    公开(公告)号:US20220127228A1

    公开(公告)日:2022-04-28

    申请号:US17296542

    申请日:2020-07-21

    Abstract: The invention provides a method for producing a dichloro addition product of an aliphatic olefin by photocatalysis under visible light. The method includes reacting an aliphatic olefin as a substrate with hydrochloric acid as a chlorine source in an organic solvent under visible light irradiation in the presence of copper chloride with visible light absorption ability as a catalyst, to obtain the dichloro addition product of the aliphatic olefin, wherein the reaction is carried out under an oxygen-containing atmosphere, the aliphatic olefin comprises a carbon-carbon double bond and a C9-C15 aliphatic chain connected to the carbon-carbon double bond by a covalent bond. In the invention, visible light is used to provide the energy and a transition metal chloride with visible light absorption ability is used to undergo light-induced electron transfer from chloride with a reaction substrate, thereby initiating an addition reaction to obtain a dichloro addition product.

    METHOD FOR PREPARING CARBONYL SULFONE

    公开(公告)号:US20230054928A1

    公开(公告)日:2023-02-23

    申请号:US17780699

    申请日:2020-11-27

    Abstract: Disclosed is a method for preparing β-carbonyl sulfones. The method comprises: by taking an α-carbonyl diazo compound and sodium arylsulfinate as reaction substrates, cheap silver nitrate as an optimal catalyst, 1,10-phenanthroline as a ligand, and potassium persulfate as an oxidant, carrying out coupling reaction in a mixed solvent of acetonitrile and water to obtain a β-carbonyl sulfones compound. Compared with the prior art, the method has the following advantages: a wide range of reaction substrates, short reaction time, a relatively high reaction yield, a mild reaction condition, etc. In the present invention, non-toxic and harmless reagents are used as reaction raw materials, so that it has no harm to the environment and satisfies the requirements of contemporary green chemistry development. Post-reaction treatment is relatively simple, and is convenient for separation and purification. In addition, the reaction can achieve gram-scale synthesis, and lays a foundation for actual applications.

Patent Agency Ranking