Abstract:
A security platform employs a variety techniques and mechanisms to detect security related anomalies and threats in a computer network environment. The security platform is “big data” driven and employs machine learning to perform security analytics. The security platform performs user/entity behavioral analytics (UEBA) to detect the security related anomalies and threats, regardless of whether such anomalies/threats were previously known. The security platform can include both real-time and batch paths/modes for detecting anomalies and threats. By visually presenting analytical results scored with risk ratings and supporting evidence, the security platform enables network security administrators to respond to a detected anomaly or threat, and to take action promptly.
Abstract:
A security platform employs a variety techniques and mechanisms to detect security related anomalies and threats in a computer network environment. The security platform is “big data” driven and employs machine learning to perform security analytics. The security platform performs user/entity behavioral analytics (UEBA) to detect the security related anomalies and threats, regardless of whether such anomalies/threats were previously known. The security platform can include both real-time and batch paths/modes for detecting anomalies and threats. By visually presenting analytical results scored with risk ratings and supporting evidence, the security platform enables network security administrators to respond to a detected anomaly or threat, and to take action promptly.
Abstract:
Techniques for identifying attack behavior based on scripting language activity are disclosed. A security monitoring system generates a behavior profile for a first client device based on scripting language commands included in a first set of raw machine data received from the first client device, where the first client device is coupled to a network, and the first set of raw machine data is associated with network traffic received by or transmitted from the first client device. The security monitoring system analyzes a second set of raw machine data received from the first client device, where the second set of raw machine data is associated with subsequent network traffic received by or transmitted from the first client device. The security monitoring system detects an anomaly in the second set of raw machine data based on the behavior profile, and initiates a mitigation action in response to detecting the anomaly.
Abstract:
Techniques for identifying attack behavior based on scripting language activity are disclosed. A security monitoring system generates a behavior profile for a first client device based on scripting language commands included in a first set of raw machine data received from the first client device, where the first client device is coupled to a network, and the first set of raw machine data is associated with network traffic received by or transmitted from the first client device. The security monitoring system analyzes a second set of raw machine data received from the first client device, where the second set of raw machine data is associated with subsequent network traffic received by or transmitted from the first client device. The security monitoring system detects an anomaly in the second set of raw machine data based on the behavior profile, and initiates a mitigation action in response to detecting the anomaly.
Abstract:
A security platform employs a variety techniques and mechanisms to detect security related anomalies and threats in a computer network environment. The security platform is “big data” driven and employs machine learning to perform security analytics. The security platform performs user/entity behavioral analytics (UEBA) to detect the security related anomalies and threats, regardless of whether such anomalies/threats were previously known. The security platform can include both real-time and batch paths/modes for detecting anomalies and threats. By visually presenting analytical results scored with risk ratings and supporting evidence, the security platform enables network security administrators to respond to a detected anomaly or threat, and to take action promptly.
Abstract:
A security platform employs a variety techniques and mechanisms to detect security related anomalies and threats in a computer network environment. The security platform is “big data” driven and employs machine learning to perform security analytics. The security platform performs user/entity behavioral analytics (UEBA) to detect the security related anomalies and threats, regardless of whether such anomalies/threats were previously known. The security platform can include both real-time and batch paths/modes for detecting anomalies and threats. By visually presenting analytical results scored with risk ratings and supporting evidence, the security platform enables network security administrators to respond to a detected anomaly or threat, and to take action promptly.
Abstract:
Techniques for identifying attack behavior based on scripting language activity are disclosed. A security monitoring system generates a behavior profile for a first client device based on scripting language commands included in a first set of raw machine data received from the first client device, where the first client device is coupled to a network, and the first set of raw machine data is associated with network traffic received by or transmitted from the first client device. The security monitoring system analyzes a second set of raw machine data received from the first client device, where the second set of raw machine data is associated with subsequent network traffic received by or transmitted from the first client device. The security monitoring system detects an anomaly in the second set of raw machine data based on the behavior profile, and initiates a mitigation action in response to detecting the anomaly.