Abstract:
The present disclosure is directed to a system and method to remove common mode noise projected onto a touch sensor array from a display. The system is configured to activate two rows of electrodes at the same time, while coupling remaining rows of electrodes to ground. A first one of the two activated rows is used for detection of a touch and a second one of the two activated rows is used to detect common mode noise from the display. The common mode noise detected by the second row is removed from signals received from a plurality of columns of the touch sensor array.
Abstract:
The present disclosure is directed to a system and method to remove common mode noise projected onto a touch sensor array from a display. The system is configured to activate two rows of electrodes at the same time, while coupling remaining rows of electrodes to ground. A first one of the two activated rows is used for detection of a touch and a second one of the two activated rows is used to detect common mode noise from the display. The common mode noise detected by the second row is removed from signals received from a plurality of columns of the touch sensor array.
Abstract:
A touch screen controller identifies an island in a matrix of acquired touch data values. A first sharpness of the island is calculated and a second sharpness of the island is calculated if the calculated first sharpness is greater than a sharpness threshold. A dynamic strength threshold is then determined as a function of the second sharpness if a variance of the island is greater than a dynamic variance threshold. A determination is then made that the identified island is a valid stylus island if a peak strength of the island is greater than the dynamic strength threshold.
Abstract:
A touch panel includes a plurality of drive lines, a plurality of orthogonal sense lines, and a plurality of sensors. A method of controlling the touch panel to detect touches includes simultaneously applying a drive signal to each of a group of drive lines of the touch panel. Each of the drive signals is applied to a corresponding drive line in the group during a time slot and all the applied drive signals having the same electrical characteristics over the time slot. The method includes sensing sense signals generated on the sense lines in response to the applied drive signals and processing the sense signals to detect touches of the touch panel.
Abstract:
A method of pairing an intelligent input device with an electronic device includes transmitting a start pairing identifier and receiving a unique identifier that identifies the intelligent input device. The method further includes authenticating the unique identifier using authentication information stored in the electronic device and transmitting a pairing successful identifier responsive to the unique identifier being authenticated to thereby pair the intelligent input device and the electronic device.
Abstract:
A borderless touchscreen panel includes a first conductive layer having rows of capacitive sensors and receiving traces, and a second conductive layer having columns of sensor bars and transmitting traces. The capacitive sensors are coupled to control circuitry via the receiving traces, and the sensor bars are coupled to the control circuitry via the transmitting traces. Peripheral sensor bars are disposed over the receiving traces such that the receiving traces can be routed within an active portion of the borderless touchscreen panel without obstructing its touch-detection capabilities. Furthermore, the receiving traces are comprised of a transparent material such as indium tin oxide, and therefore do not obstruct the display capabilities of the active portion. Thus, there is no need for an inactive border region since the receiving traces are disposed within the active portion without obstructing either the touch-detection or display capabilities of the borderless touchscreen panel.