Abstract:
A capacitor for sensing a substrate voltage in an integrated circuit power device may be implemented by isolating a portion or segment of the metal layer that normally covers the heavily doped perimeter region typically used for electric field equalization. In conjunction, one or more portions of an isolation dielectric layer of silicon oxide are not removed from the surface of the semiconductor substrate, as is commonly done before depositing the metal layer. The portions of isolated silicon oxide which are not removed become the dielectric layer of the capacitor. Moreover, one plate of the capacitor is formed by the heavily doped perimeter region that is electrically connected to the substrate (e.g. a drain or collector region). The other plate is formed by the segment of metal isolated from the remaining metal layer defined directly over the heavily doped perimeter region.
Abstract:
A driving circuit for electronically switched motors is provided. The driving circuit includes a supply voltage rectifying stage for providing a rectified supply voltage, first switching means for switching state based on output of a first control block, magnetic means for providing a magnetic flux according to the state of the first switching means, transmission diodes for transmitting an exciting current that flows through the magnetic means, first energy storing means for storing the exciting current, an energy return stage for transferring the energy stored in the first energy storing means to the rectifying stage, and energetic conversion means for receiving the energy stored in the energy storing means through second switching means controlled by a second control block, so as to provide a current as sinusoidal as possible.
Abstract:
The converter uses the energy stored in the output filter of a step-down (or buck) converter and in the inductor of a step up/down (or buck-boost) converter to supply a second output of opposite sign. In particular, the converter has a first input receiving an input voltage; a first output supplying a first output voltage of a first sign; a second output supplying a second output voltage of opposite sign; a controlled switch connected between the first input and a first intermediate node; an inductor connected between the first intermediate node and the first output; a diode connected between the first intermediate node and a second intermediate node; and a dual voltage generating circuit connected between the second intermediate node and the second output.
Abstract:
An SMPS converter with an inductor connected in series to the standard inductor present in the output filter to form an inductive divider supplying an intermediate voltage having an amplitude greater than the output voltage. The intermediate voltage is supplied to a capacitor that stores the voltage during the conduction phase of the integrated circuit that forms the switch of the converter and transfers the voltage during opening of the integrated circuit to a capacitor connected between the output and the supply input of the integrated circuit.
Abstract:
An electronic circuit is for the gradual start-up of electric loads, particularly halogen lamps. The circuit may include a power device having an output terminal connected to the electric load and having at least one control terminal receiving a predetermined driving current value. The circuit may further include a comparator having a first input terminal coupled to the power device output and a second input terminal kept at a reference potential. The comparator output may be connected to a controlled switch inserted upstream of the control terminal to control the opening of the switch and adjust the start-up phase of the power device according to the value of the reference potential.
Abstract:
An electronic thermal protection circuit is for high currents which can occur in the start-up phase in lighting converters. The circuit is associated with a power device having an output terminal connected to an electric load and at least one control terminal receiving a predetermined driving current value by a driving circuit portion. Advantageously, an integrated temperature sensor is provided to detect the temperature of the power device, and an output stage is connected downstream of the sensor to switch off the driving circuit portion when a predetermined operation temperature is exceeded.