Abstract:
A method of deoxygenation of tall oil as well as methods for the production of aliphatic hydrocarbons and polymerizable monomers from tall oil. Sulphurous crude tall oil together with hydrogen gas is fed into a reactor comprising a catalyst bed. The oil is catalytically deoxygenated by hydrogen in the bed by use of a sulfided metal catalyst, e.g. a NiMoS catalyst. The flow exiting the reactor is cooled down and a hydrocarbon-bearing liquid phase is separated from a gas phase, followed by subjecting the liquid phase to distillation for removal of useless aromatic hydrocarbons and then to steam cracking to form a product containing olefins such as ethylene or propylene. By regulation of the deoxygenation temperature to be at least 270° C. but less than 360° C. the yield is rich in linear and cyclic aliphates that usefully turn to olefins in the steam cracking, while formation of napthalenes is reduced.
Abstract:
The invention concerns a method of manufacturing paper or board, the paper or board obtained by the method, and a method of producing a tray from the board. In a fibrous stock for papermaking is incorporated an amount of polymer coated fibrous particles, which even have a foaming agent such as moisture contained therein. A web is formed from the fibrous stock on a forming fabric of a paper or board machine, followed by pressing and drying to a finished paper or board. As the paper or board is sufficiently heated the foaming agent within the particles evaporates, causing expansion and foaming of the polymer coating, which adds to malleability of the board as it is moulded into a shaped article such as a board tray. The invention even covers production of doubly coated fibrous particles for use in said methods, the inner coating layer being of a foamable polymer with a higher melt flow rate and the outer coating layer being of a non-foaming polymer of a lower melt flow rate.
Abstract:
The invention concerns a method of manufacturing paper or board, the paper or board obtained by the method, and a method of producing a tray from the board. In a fibrous stock for papermaking is incorporated an amount of polymer coated fibrous particles, which even have a foaming agent such as moisture contained therein. A web is formed from the fibrous stock on a forming fabric of a paper or board machine, followed by pressing and drying to a finished paper or board. As the paper or board is sufficiently heated the foaming agent within the particles evaporates, causing expansion and foaming of the polymer coating, which adds to malleability of the board as it is moulded into a shaped article such as a board tray. The invention even covers production of doubly coated fibrous particles for use in said methods, the inner coating layer being of a foamable polymer with a higher melt flow rate and the outer coating layer being of a non-foaming polymer of a lower melt flow rate.
Abstract:
A method of deoxygenation of tall oil as well as methods for the production of aliphatic hydrocarbons and polymerizable monomers from tall oil. Sulphurous crude tall oil together with hydrogen gas is fed into a reactor comprising a catalyst bed. The oil is catalytically deoxygenated by hydrogen in the bed by use of a sulfided metal catalyst, e.g. a NiMoS catalyst. The flow exiting the reactor is cooled down and a hydrocarbon-bearing liquid phase is separated from a gas phase, followed by subjecting the liquid phase to distillation for removal of useless aromatic hydrocarbons and then to steam cracking to form a product containing olefins such as ethylene or propylene. By regulation of the deoxygenation temperature to be at least 270° C. but less than 360° C. the yield is rich in linear and cyclic aliphates that usefully turn to olefins in the steam cracking, while formation of napthalenes is reduced.
Abstract:
The present invention relates to a method of deoxygenating tall oil pitch, yielding aliphatic and aromatic hydrocarbons. The invention even comprises turning the aliphates into polymerizable olefins by steam cracking, and turning the aromates into polymerizable terephthalic acid by oxygenation and, as necessary, rearrangement. The monomers can be used for the production of polymers of partially or completely biologic origin. According to the invention, tall oil pitch is first heated to turn it into liquid, which is then fed into a catalyst bed and catalytically deoxygenated with hydrogen. The deoxygenation catalyst is preferably a Ni—Mo catalyst and, in addition, a cracking catalyst can be used, such as an acidic zeolite catalyst. The deoxygenated product stream is cooled down so as to obtain a liquid, which is distilled for separation of the aliphatic and aromatic hydrocarbons for use in the production of the respective monomers and finally polymers.
Abstract:
The present invention relates to a method for manufacturing modified cellulose fibers for a moldable cellulose fiber based material, said method comprising: a) providing a chemical or semi-chemical wood pulp comprising cellulose fibers, and optionally subjecting the pulp to alkaline extraction to obtain an alkaline extracted pulp; and b) subjecting the pulp or the alkaline extracted pulp of step a) to a chemical treatment with an alkaline solution and/or an organic solvent to obtain a treated pulp or treated alkaline extracted pulp comprising modified cellulose fibers for a moldable cellulose fiber based material. The invention further relates to a moldable cellulose fiber based material comprising at least 70% by dry weight of modified cellulose fibers obtainable by the method.