Abstract:
A system and method for synchronizing multiple integrated circuit (IC) chips for an input device having a display device integrated with a capacitive sensing device. A first one of the IC chips is a master IC chip and a second one of the IC chips is a slave IC chip. The master IC chip is configured to transmit synchronization signals to and from the slave IC chip, such that capacitive frames are acquired by each of the IC chips at substantially the same time, the initiation of the sensing signals is synchronized for each of the IC chips and the clock signals of the slave IC chips are synchronized with the clock signal of the master IC chip.
Abstract:
Embodiments described herein include an input device with a plurality of capacitive sensor electrodes configured to receive a signal. The input device also includes a processing system coupled to the plurality of capacitive sensor electrodes. The processing system includes an analog front end (AFE). The AFE includes an anti-aliasing filter comprising a continuous time analog infinite impulse response (IIR) filter configured to filter out interference from the received signal at frequencies higher than a signal frequency of the processing system to produce an anti-aliased signal. The AFE also includes a charge integrator configured to integrate the anti-aliased signal.
Abstract:
A processing system configured to sense an input object in a sensing region of a sensing device including a transmitter module coupled to a first transmitter electrode and a second transmitter electrode and configured to simultaneously apply a first transmitter signal to the first transmitter electrode and a second transmitter signal to the second transmitter electrode, wherein the first transmitter signal is based on a first one of a plurality of distinct codes and the second transmitter signal is based on a second one of the plurality of distinct codes. The processing system also includes a receiver module including receiver circuitry coupled to a first receiver electrode and configured to receive a first resulting signal with the first receiver electrode, the first resulting signal comprising effects corresponding to the first and second transmitter signals and a noise component. The processing system is configured to determine an estimate of the noise component using a third one of the plurality of distinct codes which is not associated with a transmitter signal.
Abstract:
Embodiments disclosed herein generally relate to electronic devices, and more specifically, to a waveform generation circuit for input devices. One or more embodiments provide a new waveform generator for an integrated touch and display driver (TDDI) and methods for generating a waveform for capacitive sensing with a finely tunable sensing frequency. A waveform generator includes accumulator circuitry, truncation circuitry, and saturation circuitry. The accumulator circuitry is configured to accumulate the phase increment value based on a clock signal, and output the accumulated phase increment value. The truncation circuitry configured to drop one or more bits of the accumulated phase increment value to output a truncated value. The saturation circuitry is configured to compare the truncated value to a saturation limit and output a signal corresponding to accessed data samples.
Abstract:
Embodiments disclosed herein generally relate to electronic devices, and more specifically, to a waveform generation circuit for input devices. One or more embodiments provide a new waveform generator for an integrated touch and display driver (TDDI) and methods for generating a waveform for capacitive sensing with a finely tunable sensing frequency. A waveform generator includes accumulator circuitry, truncation circuitry, and saturation circuitry. The accumulator circuitry is configured to accumulate the phase increment value based on a clock signal, and output the accumulated phase increment value. The truncation circuitry configured to drop one or more bits of the accumulated phase increment value to output a truncated value. The saturation circuitry is configured to compare the truncated value to a saturation limit and output a signal corresponding to accessed data samples.
Abstract:
A processing system configured to sense an input object in a sensing region of a sensing device including a transmitter module coupled to a first transmitter electrode and a second transmitter electrode and configured to simultaneously apply a first transmitter signal to the first transmitter electrode and a second transmitter signal to the second transmitter electrode, wherein the first transmitter signal is based on a first one of a plurality of distinct codes and the second transmitter signal is based on a second one of the plurality of distinct codes. The processing system also includes a receiver module including receiver circuitry coupled to a first receiver electrode and configured to receive a first resulting signal with the first receiver electrode, the first resulting signal comprising effects corresponding to the first and second transmitter signals and a noise component. The processing system is configured to determine an estimate of the noise component using a third one of the plurality of distinct codes which is not associated with a transmitter signal.
Abstract:
A system and method for synchronizing multiple integrated circuit (IC) chips for an input device having a display device integrated with a capacitive sensing device. A first one of the IC chips is a master IC chip and a second one of the IC chips is a slave IC chip. The master IC chip is configured to transmit synchronization signals to and from the slave IC chip, such that capacitive frames are acquired by each of the IC chips at substantially the same time, the initiation of the sensing signals is synchronized for each of the IC chips and the clock signals of the slave IC chips are synchronized with the clock signal of the master IC chip.
Abstract:
A system and method for synchronizing multiple integrated circuit (IC) chips for an input device having a display device integrated with a capacitive sensing device. A first one of the IC chips is a master IC chip and a second one of the IC chips is a slave IC chip. The master IC chip is configured to transmit synchronization signals to and from the slave IC chip, such that capacitive frames are acquired by each of the IC chips at substantially the same time, the initiation of the sensing signals is synchronized for each of the IC chips and the clock signals of the slave IC chips are synchronized with the clock signal of the master IC chip.