Abstract:
A single-layer capacitive sensor comprises a user input region and a border region proximate to and outside of the user input region. The user input region includes a plurality of transmitter electrodes that are disposed within the user input region. The user input region also comprises a plurality of receiver electrodes disposed in a common stackup layer with the plurality of transmitter electrodes within the user input region such that the transmitter electrodes and the receiver electrodes make no crossings of one another in the common stackup layer or in any other layer within the user input region. The border region comprises a plurality of routing traces extending from the border region into the user input region to couple with the transmitter electrodes and the receiver electrodes. The border region also comprises a plurality of transmission traces disposed entirely within the border region.
Abstract:
An approach is provided for estimating and correcting parasitic responses of a touch sensor device. The input device measures a first capacitance signal generated by a first pixel that is covered at least partially by an input object. The input device measures a second capacitance signal generated by a second pixel that is covered at least partially by the input object. The input device measures a third capacitance signal generated by a third pixel. Based on at least the first capacitance signal and the second capacitance signal, the input device identifies a position of the input object within the sensing region. Based on the position of the input object, the input device identifies a trace covered by the input object and associated with the third pixel. The input device calculates an updated third capacitance signal by subtracting a correction amount from the third capacitance signal.
Abstract:
Embodiments of the invention generally provide an input device having a reduced system complexity and low production cost. As the size of input devices, such as touch pads and other similar devices increase, the need for an input device that is able to maintain or even improve the touch sensing accuracy without greatly increasing the manufacturing cost becomes increasingly important. Embodiments of the invention may provide an input device that includes an array of capacitive sensing pixels that each include a unique pair of sensor electrodes, wherein at least one of the electrodes in a first pixel is also in communication with another sensor electrode in at least one other pixel, which is not in the same row or column with the first pixel.
Abstract:
Embodiments of the invention generally provide an input device having a reduced system complexity and low production cost. As the size of input devices, such as touch pads and other similar devices increase, the need for an input device that is able to maintain or even improve the touch sensing accuracy without greatly increasing the manufacturing cost becomes increasingly important. Embodiments of the invention may provide an input device that includes an array of capacitive sensing pixels that each include a unique pair of sensor electrodes, wherein at least one of the electrodes in a first pixel is also in communication with another sensor electrode in at least one other pixel, which is not in the same row or column with the first pixel.