摘要:
Methods and systems are provided for steering network packets. According to one embodiment, a dynamically configurable steering table is stored within a memory of each network interface of a networking routing/switching device. The steering table represents a mapping that logically assigns each of the network interfaces to one of multiple packet processing resources of the network routing/switching device. The steering table has contained therein information indicative of a unique identifier/address of the assigned packet processing resource. Responsive to receiving a packet on a network interface, the network interface performs Layer 1 or Layer 2 steering of the received packet to the assigned packet processing resource by retrieving the information indicative of the unique identifier/address of the assigned packet processing resource from the steering table based on a channel identifier associated with the received packet and the received packet is processed by the assigned packet processing resource.
摘要:
Methods and systems are provided for steering network packets. According to one embodiment, a mapping associates a processing resource with a network interface module (netmod) and/or a number of line interface ports included within the netmod. In one embodiment, the mapping is configurable within the processing resource and pushed to the netmod. The netmod uses the mapping to steer network packets to the processing resource when the packets conform to the mapping. The mapping may be additionally used to identify a specific process that is to be performed against the packets once the processing resource receives the steered packets from the netmod.
摘要:
Methods and systems are provided for steering network packets. According to one embodiment a method is provided for steering incoming network packets. Each network packet processing resource of a network routing/switching device is dynamically assigned to one or more network interfaces of the network routing/switching device. Each of the network packet processing resources includes one or more processing elements and a memory. Incoming network packets received by the network interfaces are steered to an appropriate network packet processing resource based on the dynamic assignment.
摘要:
Methods and systems are provided for steering network packets. According to one embodiment, a mapping associates a processing resource with a network interface module (netmod) and/or a number of line interface ports included within the netmod. In one embodiment, the mapping is configurable within the processing resource and pushed to the netmod. The netmod uses the mapping to steer network packets to the processing resource when the packets conform to the mapping. The mapping may be additionally used to identify a specific process that is to be performed against the packets once the processing resource receives the steered packets from the netmod.
摘要:
Methods and Systems are provided for steering network packets and bridging media channels to a single processing resource. A mapping associates a processing resource with a network interface module (Netmod) or a number of line interface ports included within the Netmod. In one embodiment, the mapping is configurable within the processing resource and pushed to the Netmod. The Netmod uses the mapping to steer network packets to the processing resource when the packets conform to the mapping. Moreover, the mapping can be used to identify a specific process that is to be performed against the packets once the processing resource receives the steered packets from the Netmod.
摘要:
Methods and systems are provided for steering network packets. According to one embodiment a method is provided for steering incoming network packets. Each network packet processing resource of a network routing/switching device is dynamically assigned to one or more network interfaces of the network routing/switching device. Each of the network packet processing resources includes one or more processing elements and a memory. Incoming network packets received by the network interfaces are steered to an appropriate network packet processing resource based on the dynamic assignment.
摘要:
Methods and systems are provided for steering network packets. According to one embodiment, a dynamically configurable steering table is stored within a memory of each network interface of a networking routing/switching device. The steering table represents a mapping that logically assigns each of the network interfaces to one of multiple packet processing resources of the network routing/switching device. The steering table has contained therein information indicative of a unique identifier/address of the assigned packet processing resource. Responsive to receiving a packet on a network interface, the network interface performs Layer 1 or Layer 2 steering of the received packet to the assigned packet processing resource by retrieving the information indicative of the unique identifier/address of the assigned packet processing resource from the steering table based on a channel identifier associated with the received packet and the received packet is processed by the assigned packet processing resource.
摘要:
A virtual routing platform includes a line interface a plurality of virtual routing engines (VREs) to identify packets of different packet flows and perform a hierarchy of metering including at least first and second levels of metering on the packet flows. A first level of metering may be performed on packets of a first packet flow using a first metering control block (MCB). The first level of metering may be one level of metering in a hierarchy of metering levels. A second level of metering on the packets of the first packet flow and packets of a second flow using a second MCB. The second level of metering may be another level of metering in the hierarchy. A cache-lock may be placed on the appropriate MCB prior to performing the level of metering. The first and second MCBs may be data structures stored in a shared memory of the virtual routing platform. The cache-lock may be released after performing the level of metering using the MCB. The cache-lock may comprise setting a lock-bit of a cache line index in a cache tag store, which may identify a MCB in the cache memory. The virtual routing platform may be a multiprocessor system utilizing a shared memory having a first and second processors to perform levels of metering in parallel. In one embodiment, a virtual routing engine may be shared by a plurality of virtual router contexts running in a memory system of a CPU of the virtual routing engine. In this embodiment, the first packet flow may be associated with one virtual router context and the second packet flow is associated with a second virtual router context. The first and second routing contexts may be of a plurality of virtual router contexts resident in the virtual routing engine.
摘要:
Methods and systems are provided for applying metering and rate-limiting in a virtual router environment and supporting a hierarchy of metering/rate-limiting contexts per packet flow. According to one embodiment, multiple first level metering options and multiple second level metering options associated with a hierarchy of metering levels are provided. A virtual routing engine receives packets associated with a first packet flow and packets associated with a second packet flow. The virtual routing engine performs a first type of metering of the first level metering options on the packets associated with the first packet flow using a first metering control block (MCB) and performs a second type of metering of the second level metering options on the packets associated with the first packet flow and the packets associated with the second packet flow using a second MCB.
摘要:
Methods and systems are provided for applying metering and rate-limiting in a virtual router environment and supporting a hierarchy of metering/rate-limiting contexts per packet flow. According to one embodiment, multiple first level metering options and multiple second level metering options associated with a hierarchy of metering levels are provided. A virtual routing engine receives packets associated with a first packet flow and packets associated with a second packet flow. The virtual routing engine performs a first type of metering of the first level metering options on the packets associated with the first packet flow using a first metering control block (MCB) and performs a second type of metering of the second level metering options on the packets associated with the first packet flow and the packets associated with the second flow using a second MCB.