Abstract:
A magnet motor has a stator formed from a laminated core provided with windings to form phases and a rotor provided with magnets distributed angularly around at least one section of the rotor and pivotably received in the housing of the stator. The stator has a length greater than a length of said section of the rotor and the rotor is provided with at least one ring made from magnetic material that adjoins said section and is received in the housing of the stator. A drive device having a plurality of motors and a method for producing such a motor are also provided.
Abstract:
The invention concerns a device for the active control of a force feedback for a control device, comprising a calculator, a position sensor (3) configured to provide the calculator with an effective position signal (Pm) of the control device, and an actuator (2) ensuring the displacement of the control device at the command of the calculator, the calculator being configured to use the effective position signal and modulate a setpoint current (lc) delivered to the actuator to ensure the position feedback of the displacement of the control device, characterized in that the calculator is further configured to create at least one saturation terminal (Bsat+, Bsat−) according to a predetermined function of the value of the effective position signal of the position/force law kind, and to saturate the setpoint current using the at least one saturation terminal.
Abstract:
The invention concerns a device for the active control of a force feedback for a control device, comprising a calculator, a position sensor (3) configured to provide the calculator with an effective position signal (Pm) of the control device, and an actuator (2) ensuring the displacement of the control device at the command of the calculator, the calculator being configured to use the effective position signal and modulate a setpoint current (lc) delivered to the actuator to ensure the position feedback of the displacement of the control device, characterised in that the calculator is further configured to create at least one saturation terminal (Bsat+, Bsat−) according to a predetermined function of the value of the effective position signal of the position/force law kind, and to saturate the setpoint current using the at least one saturation terminal.
Abstract:
An electric motor stator wherein an annular central part and a yoke surrounding the central part, the central part includes a bundle of laminations delimiting poles, wherein the bundle of laminations includes a plurality of first laminations each containing portions forming a pole part that are joined by an annular internal portion, second laminations each forming a pole part being mounted between the first laminations, the first laminations being spaced apart from one another at a predetermined spacing according to a required inductance.
Abstract:
An actuator comprising at least one multiphase motor having phases facing a rotor secured to an outlet shaft associated with a braking member and provided with a connection to a movable element that is to be moved, the motors and the braking member being connected to at least one motor control unit for controlling the motors by powering their phases. The motor has at least four phases wound in such a manner as to avoid a neutral point, and in that the control unit has one single-phase inverter per phase and is arranged to implement a nominal, three-phase mode of control, and a degraded mode of control that enables the rotor to be driven in rotation by powering two non-collinear phases thereof.
Abstract:
An actuator comprising at least one multiphase motor having phases facing a rotor secured to an outlet shaft associated with a braking member and provided with a connection to a movable element that is to be moved, the motors and the braking member being connected to at least one motor control unit for controlling the motors by powering their phases. The motor has at least four phases wound in such a manner as to avoid a neutral point, and in that the control unit has one single-phase inverter per phase and is arranged to implement a nominal, three-phase mode of control, and a degraded mode of control that enables the rotor to be driven in rotation by powering two non-collinear phases thereof.