摘要:
Systems, methods, and media are disclosed herein that can be embodied in a traditional Relational Database Management System (RDBMS) in order to transform it into a Streaming Relational Database Management System (SRDBMS). An SRDBMS may provide functionality such as to manage and populate streams, tables, and archived stream histories and support the evaluation of continuous queries on streams and tables. Both continuous and snapshot queries support the full spectrum of the industry standard, widely used, Structured Query Language. The present technology can support a high number of concurrent continuous queries using a scalable and efficient shared query evaluation scheme, support on-the-fly addition of continuous queries into a mechanism that implements the shared evaluation scheme, reuse RDBMS modules such as relational operators and expression evaluators, and visualize results of continuous queries in real time
摘要:
Systems, methods, and media are disclosed herein that can be embodied in a traditional Relational Database Management System (RDBMS) in order to transform it into a Streaming Relational Database Management System (SRDBMS). An SRDBMS may provide functionality such as to manage and populate streams, tables, and archived stream histories and support the evaluation of continuous queries on streams and tables. Both continuous and snapshot queries support the full spectrum of the industry standard, widely used, Structured Query Language. The present technology can support a high number of concurrent continuous queries using a scalable and efficient shared query evaluation scheme, support on-the-fly addition of continuous queries into a mechanism that implements the shared evaluation scheme, reuse RDBMS modules such as relational operators and expression evaluators, and visualize results of continuous queries in real time.
摘要:
Systems, methods, and media are disclosed herein that can be embodied in a traditional Relational Database Management System (RDBMS) in order to transform it into a Streaming Relational Database Management System (SRDBMS). An SRDBMS may provide functionality such as to manage and populate streams, tables, and archived stream histories and support the evaluation of continuous queries on streams and tables. Both continuous and snapshot queries support the full spectrum of the industry standard, widely used, Structured Query Language. The present technology can support a high number of concurrent continuous queries using a scalable and efficient shared query evaluation scheme, support on-the-fly addition of continuous queries into a mechanism that implements the shared evaluation scheme, reuse RDBMS modules such as relational operators and expression evaluators, and visualize results of continuous queries in real time.
摘要:
A streaming database management system may provide support for creating a new continuous query operator for on-the-fly addition of a new query, e.g., a new SQL query and/or new continuous query operator, into a shared continuous query plan. Alternatively, the streaming database management system may associate the new query on-the-fly with an existing continuous query operator, such as a relational operator and expression evaluator, to reuse the existing continuous query operator. In some embodiments, multiple operators are grouped for on-the-fly addition to the shared continuous query plan. Alternatively, the streaming database management system may identify a group of multiple operators in the shared continuous query plan for reuse by the new query.
摘要:
Systems, methods, and media are disclosed herein that can be embodied in a traditional Relational Database Management System (RDBMS) in order to transform it into a Streaming Relational Database Management System (SRDBMS). An SRDBMS may provide functionality such as to manage and populate streams, tables, and archived stream histories and support the evaluation of continuous queries on streams and tables. Both continuous and snapshot queries support the full spectrum of the industry standard, widely used, Structured Query Language. The present technology can support a high number of concurrent continuous queries using a scalable and efficient shared query evaluation scheme, support on-the-fly addition of continuous queries into a mechanism that implements the shared evaluation scheme, reuse RDBMS modules such as relational operators and expression evaluators, and visualize results of continuous queries in real time
摘要:
Systems, methods, and media are disclosed herein that can be embodied in a traditional Relational Database Management System (RDBMS) in order to transform it into a Streaming Relational Database Management System (SRDBMS). An SRDBMS may provide functionality such as to manage and populate streams, tables, and archived stream histories and support the evaluation of continuous queries on streams and tables. Both continuous and snapshot queries support the full spectrum of the industry standard, widely used, Structured Query Language. The present technology can support a high number of concurrent continuous queries using a scalable and efficient shared query evaluation scheme, support on-the-fly addition of continuous queries into a mechanism that implements the shared evaluation scheme, reuse RDBMS modules such as relational operators and expression evaluators, and visualize results of continuous queries in real time
摘要:
A streaming database management system may provide support for creating a new continuous query operator for on-the-fly addition of a new query, e.g., a new SQL query and/or new continuous query operator, into a shared continuous query plan. Alternatively, the streaming database management system may associate the new query on-the-fly with an existing continuous query operator, such as a relational operator and expression evaluator, to reuse the existing continuous query operator. In some embodiments, multiple operators are grouped for on-the-fly addition to the shared continuous query plan. Alternatively, the streaming database management system may identify a group of multiple operators in the shared continuous query plan for reuse by the new query.
摘要:
In a system and method for order-independent stream query processing, one or more input streams of data are received, and the one or more input streams are analyzed to determine data which is older than an already emitted progress indicator. The data which is older than the already emitted progress indicator is partitioned into one or more partitions, and each of the one or more partitions are independently processed using out-of-order processing techniques. A query is received, rewritten and decomposed into one or more sub-queries that produce partial results for each of the one or more partitions, where each of the one or more sub-queries correspond to a partition. A view is also produced that consolidates the partial results for each partition. The partial results are consolidated at a consolidation time specified by the query to produce final results, and the final results are provided.
摘要:
In a system and method for order-independent stream query processing, one or more input streams of data are received, and the one or more input streams are analyzed to determine data which is older than an already emitted progress indicator. The data which is older than the already emitted progress indicator is partitioned into one or more partitions, and each of the one or more partitions are independently processed using out-of-order processing techniques. A query is received, rewritten and decomposed into one or more sub-queries that produce partial results for each of the one or more partitions, where each of the one or more sub-queries correspond to a partition. A view is also produced that consolidates the partial results for each partition. The partial results are consolidated at a consolidation time specified by the query to produce final results, and the final results are provided.
摘要:
A method, apparatus, and article of manufacture for providing for persistence of Java™ objects. A Java™ object is instantiated from its corresponding Java™ class definition and then loaded into a Java™ virtual machine. The class definition corresponding to the Java™ object can be derived using either the Java™ Reflection API. Once the class definition is derived, it can be used to inspect the contents of the Java™ object. A structured type instance is then generated from the inspected contents of the Java™ object, wherein the structured type instance is stored in a column of a table of a relational database managed by a relational database management system. As a result of these steps, the Java™ object is persistently stored in the database, yet the persistence semantics for storing the object are not specified as part of the class definition of the object, which means that the persistence semantics are orthogonal to the class definition.