摘要:
Disclosed are methods and apparatus for data tapping within a storage area network (SAN) and providing tapped data to a third party device, such as an appliance. In general, mechanisms are provided in a SAN to allow a data tap of data flowing between an initiator and a target. In one implementation, a data virtual target (DVT) in created in a network device to intercept data sent by a specific initiator to a specific logical unit of a specific target. The data or a copy of the data is sent to both the specific logical unit of the specific target and to an appliance. The data routing may be accomplished by use of a virtual initiator (VI), which is configured to send the data (or a copy of the data) to the specific target and the appliance. In a transparent mode of operations, the DVT has a same PWWN (port world wide name) and FCID (fibre channel identifier) as the specific target. In a first proxy mode of operation, the DVT has a different PWWN and FCID than the specific target. In a second proxy mode of operation, the DVT has a same PWWN and different FCID than the specific target.
摘要:
A scalable NAS file system and protocols for implementing CIFS thereon are disclosed. In certain embodiments, the protocols implement the CIFS protocol on a scalable file server architecture having one or more protocol termination nodes, one or more file server nodes, and one or more disk controller nodes. Among the features that may be specifically implemented are tree access, file access, user authentication, locking, state maintenance, and failover of protocol termination nodes and file server nodes.
摘要:
A technique is provided for implementing online restriping of a volume in a storage area network. A first instance of the volume is instantiated at a first port of the fibre channel fabric for enabling I/O operations to be performed at the volume. While restriping operations are being performed at the volume, the first port is able to concurrently perform I/O operations at the volume.
摘要:
The present invention provides methods and devices for implementing a Low Latency Ethernet (“LLE”) solution, also referred to herein as a Data Center Ethernet (“DCE”) solution, which simplifies the connectivity of data centers and provides a high bandwidth, low latency network for carrying Ethernet and storage traffic. Some aspects of the invention involve transforming FC frames into a format suitable for transport on an Ethernet. Some preferred implementations of the invention implement multiple virtual lanes (“VLs”) in a single physical connection of a data center or similar network. Some VLs are “drop” VLs, with Ethernet-like behavior, and others are “no-drop” lanes with FC-like behavior. Some preferred implementations of the invention provide guaranteed bandwidth based on credits and VL. Active buffer management allows for both high reliability and low latency while using small frame buffers. Preferably, the rules for active buffer management are different for drop and no drop VLs.
摘要:
The present invention provides methods and devices for implementing a Low Latency Ethernet (“LLE”) solution, also referred to herein as a Data Center Ethernet (“DCE”) solution, which simplifies the connectivity of data centers and provides a high bandwidth, low latency network for carrying Ethernet and storage traffic. Some aspects of the invention involve transforming FC frames into a format suitable for transport on an Ethernet. Some preferred implementations of the invention implement multiple virtual lanes (“VLs”) in a single physical connection of a data center or similar network. Some VLs are “drop” VLs, with Ethernet-like behavior, and others are “no-drop” lanes with FC-like behavior. Some preferred implementations of the invention provide guaranteed bandwidth based on credits and VL. Active buffer management allows for both high reliability and low latency while using small frame buffers. Preferably, the rules for active buffer management are different for drop and no drop VLs.
摘要:
A method and apparatus to improve the performance of a SCSI write over a high latency network. The apparatus includes a first Switch close to the initiator in a first SAN and a second Switch close to the target in a second SAN. In various embodiments, the two Switches are border switches connecting their respective SANs to a relatively high latency network between the two SANs. In addition, the initiator can be either directly connected or indirectly connected to the first Switch in the first SAN. The target can also be either directly or indirectly connected to the second Switch in the second SAN. During operation, the method includes the first Switch sending Transfer Ready (Xfr_rdy) frame(s) based on buffer availability to the initiating Host in response to a SCSI Write command from the Host directed to the target. The first and second Switches then coordinate with one another by sending Transfer Ready commands to each other independent of the target's knowledge. The second switch buffers the data received from the Host until the target indicates it is ready to receive the data. Since the Switches send frames to the initiating Host independent of the target, the Switches manipulate the OX_ID and RX_ID fields in the Fibre Channel header of the various commands associated with the SCSI Write. The OX_ID and RX_ID fields are manipulated so as to trap the commands and so that the Switches can keep track of the various commands associated with the SCSI write.
摘要:
Methods and devices are provided for non-disruptive monitoring of network traffic through one or more ports of a Fibre Channel network device. Preferred embodiments of the invention are used in conjunction with the switched port analyzer (“SPAN”) and/or remote SPAN (“RSPAN”) features. SPAN mode operation allows traffic through any Fibre Channel interface of a network device to be replicated and delivered to a single port on the same network device. Ingress SPAN allows the monitoring of some or all packets that ingress a specified port or ports. Egress SPAN allows the monitoring of some or all packets that egress a specified port or ports. RSPAN allows the delivery of the replicated traffic to a port on a remote network device. Filtering may be applied, for example, to SPAN packets having selected virtual storage area network numbers.
摘要:
The present invention provides methods and devices for implementing a Low Latency Ethernet (“LLE”) solution, also referred to herein as a Data Center Ethernet (“DCE”) solution, which simplifies the connectivity of data centers and provides a high bandwidth, low latency network for carrying Ethernet and storage traffic. Some aspects of the invention involve transforming FC frames into a format suitable for transport on an Ethernet. Some preferred implementations of the invention implement multiple virtual lanes (“VLs”) in a single physical connection of a data center or similar network. Some VLs are “drop” VLs, with Ethernet-like behavior, and others are “no-drop” lanes with FC-like behavior. Some preferred implementations of the invention provide guaranteed bandwidth based on credits and VL. Active buffer management allows for both high reliability and low latency while using small frame buffers. Preferably, the rules for active buffer management are different for drop and no drop VLs.
摘要:
The present invention provides methods and devices for implementing a Low Latency Ethernet (“LLE”) solution, also referred to herein as a Data Center Ethernet (“DCE”) solution, which simplifies the connectivity of data centers and provides a high bandwidth, low latency network for carrying Ethernet and storage traffic. Some aspects of the invention involve transforming FC frames into a format suitable for transport on an Ethernet. Some preferred implementations of the invention implement multiple virtual lanes (“VLs”) in a single physical connection of a data center or similar network. Some VLs are “drop” VLs, with Ethernet-like behavior, and others are “no-drop” lanes with FC-like behavior. Some preferred implementations of the invention provide guaranteed bandwidth based on credits and VL. Active buffer management allows for both high reliability and low latency while using small frame buffers. Preferably, the rules for active buffer management are different for drop and no drop VLs.
摘要:
A method and apparatus to improve the performance of a SCSI write over a high latency network. The apparatus includes a first Switch close to the initiator in a first SAN and a second Switch close to the target in a second SAN. In various embodiments, the two Switches are border switches connecting their respective SANs to a relatively high latency network between the two SANs. In addition, the initiator can be either directly connected or indirectly connected to the first Switch in the first SAN. The target can also be either directly or indirectly connected to the second Switch in the second SAN. During operation, the method includes the first Switch sending Transfer Ready (Xfr_rdy) frame(s) based on buffer availability to the initiating Host in response to a SCSI Write command from the Host directed to the target. The first and second Switches then coordinate with one another by sending Transfer Ready commands to each other independent of the target's knowledge. The second switch buffers the data received from the Host until the target indicates it is ready to receive the data. Since the Switches send frames to the initiating Host independent of the target, the Switches manipulate the OX_ID and RX_ID fields in the Fibre Channel header of the various commands associated with the SCSI Write. The OX_ID and RX_ID fields are manipulated so as to trap the commands and so that the Switches can keep track of the various commands associated with the SCSI write.