Abstract:
A capacitive type touch sensor, includes a plurality of driving electrodes, a plurality of sensing electrodes disposed to overlap the driving electrodes, the sensing electrodes and the driving electrodes being spaced apart from each other, a driving unit configured to supply driving signals to the respective driving electrodes, and a sensing unit configured to detect sensing signals from the sensing electrodes, wherein the driving signals supplied by the driving unit include at least one of a first driving signal having a first frequency and a second driving signal having a second frequency different from the first frequency.
Abstract:
A 2-dimensional (2D)/3-dimensional (3D) image display device generates 2D or 3D image data according to an input image signal and displays them on a display unit. The display unit includes a display panel for displaying an image in response to the 2D or 3D image data and an optical element layer operative during first and second driving modes in accordance with the 3D and 2D image data. A controller converts the optical element layer to be in the first driving mode in a first period before a 3D image signal is displayed when the input image signal changes from a 2D image signal to the 3D image signal, and converts the optical element layer to be in the second driving mode in a second period after the 2D image signal is displayed when the input image signal changes from the 3D image signal to the 2D image signal.
Abstract:
A display device including a plurality of pixels at a display region of a first substrate, and an electromagnetic resonance (EMR) sensor unit at one surface of the first substrate, the EMR sensor unit including a first group of coils and a second group of coils, the first group of coils and the second group of coils being laminated, wherein the EMR sensor unit is beneath the plurality of pixels.
Abstract:
A stylus includes a pressure detector for detecting applied pressure, a first signal generator for generating a signal of a first frequency, a second signal generator for generating a signal of a second frequency, and a controller for adjusting at least one of the first and second signal generators to control an amplitude ratio of the signal of the first frequency to the signal of the second frequency according to the applied pressure detected by the pressure detector.
Abstract:
A stylus includes a pressure detector for detecting applied pressure, a first signal generator for generating a signal of a first frequency, a second signal generator for generating a signal of a second frequency, and a controller for adjusting at least one of the first and second signal generators to control an amplitude ratio of the signal of the first frequency to the signal of the second frequency according to the applied pressure detected by the pressure detector.
Abstract:
A display device including a plurality of pixels at a display region of a first substrate, and an electromagnetic resonance (EMR) sensor unit at one surface of the first substrate, the EMR sensor unit including a first group of coils and a second group of coils, the first group of coils and the second group of coils being laminated, wherein the EMR sensor unit is beneath the plurality of pixels.
Abstract:
There is provided a touch screen panel. The touch screen panel includes first electrodes, second electrodes and spacers. The first electrodes and second electrodes are arranged opposite to each other at an interval. Spacers are arranged between the first and second electrodes, and have at least two hardnesses.
Abstract:
A touch screen panel includes a plurality of pixels on a substrate, a sealing thin film on the substrate, and a plurality of sensing electrodes on the sealing thin film, each of the sensing electrodes having a mesh structure, the mesh structures of the sensing electrodes and the pixels overlapping different portions of the substrate.
Abstract:
A flexible display device having a touch and bending sensing function includes a plurality of pixels on a display area of a first substrate, and a pressure sensor portion between the first substrate and the plurality of pixels, the pressure sensor portion including a plurality of first electrodes arranged in a first direction and a plurality of second electrodes above the first electrodes and arranged in a second direction.
Abstract:
A touch sensor including driving electrodes, sensing electrodes, a memory, and a driver. The sensing electrodes intersect the driving electrodes. The memory stores a code matrix including driving codes respectively set for the driving electrodes and driving periods. The driver supplies driving signals to the driving electrodes with reference to the code matrix. In the touch sensor, the code matrix is configured with m rows and n columns, where m is an integer greater than or equal to 2, and n=m−1.