Abstract:
A method of driving a display panel includes detecting a position of a viewer to output a viewer position detection signal, determining whether the position of the viewer is in a first area or in a second area based on the viewer position detection signal to output a viewer position signal, and driving a unit pixel of the display panel using a plurality of gamma values according to the viewer position signal. The first area is less than a reference distance, and the second area is not less than the reference distance. Thus, side visibility of a display apparatus may be improved.
Abstract:
Provided is a pixel including an organic light emitting diode, a driving circuit, and a light receiving circuit. The driving circuit is configured to supply a driving current corresponding to a data signal supplied through a data line during a scan period to the organic light emitting diode during an emission period, and to supply a first sensing current corresponding to threshold voltage/mobility information of a driving transistor or degradation information of the organic light emitting diode to a feedback line during a current sensing period. The light receiving circuit is configured to supply a second sensing current corresponding to luminance of the organic light emitting diode to the feedback line during the emission period.
Abstract:
A display panel driving apparatus includes a first switching element and a second switching element. The first switching element applies first pixel data to a first pixel connected with a first data line of a display panel during a first sub frame period. The first switching element is connected with a data channel of a data driving part. The second switching element applies second pixel data having a level higher than a level of the first pixel data to a second pixel connected with a second data line of the display panel during a second sub frame period. The second switching element is connected with the data channel. Thus, display quality of a display apparatus may be enhanced.
Abstract:
A display panel driving apparatus includes a first switching element and a second switching element. The first switching element applies first pixel data to a first pixel connected with a first data line of a display panel during a first sub frame period. The first switching element is connected with a data channel of a data driving part. The second switching element applies second pixel data having a level higher than a level of the first pixel data to a second pixel connected with a second data line of the display panel during a second sub frame period. The second switching element is connected with the data channel. Thus, display quality of a display apparatus may be enhanced.
Abstract:
A method of driving a display panel includes detecting a position of a viewer to output a viewer position detection signal, determining whether the position of the viewer is in a first area or in a second area based on the viewer position detection signal to output a viewer position signal, and driving a unit pixel of the display panel using a plurality of gamma values according to the viewer position signal. The first area is less than a reference distance, and the second area is not less than the reference distance. Thus, side visibility of a display apparatus may be improved.
Abstract:
A method of driving a display panel includes determining a source voltage level by a vertical portion in a present horizontal line of the display panel based on data of the present horizontal line, the display panel including a plurality of vertical portions extended along a vertical direction and arranged in a horizontal direction (the plurality of vertical portions including a vertical portion), generating correction data of the present horizontal line by the vertical portion utilizing the source voltage level of the present horizontal line determined by the vertical portion, generating a source voltage of the present horizontal line by the vertical portion utilizing the source voltage level of the horizontal line determined by the vertical portion, and driving the display panel by the vertical portion utilizing the correction data and the source voltage of the present horizontal line.
Abstract:
Provided is a pixel including an organic light emitting diode, a driving circuit, and a light receiving circuit. The driving circuit is configured to supply a driving current corresponding to a data signal supplied through a data line during a scan period to the organic light emitting diode during an emission period, and to supply a first sensing current corresponding to threshold voltage/mobility information of a driving transistor or degradation information of the organic light emitting diode to a feedback line during a current sensing period. The light receiving circuit is configured to supply a second sensing current corresponding to luminance of the organic light emitting diode to the feedback line during the emission period.
Abstract:
A method of driving a display panel includes determining a source voltage level by a vertical portion in a present horizontal line of the display panel based on data of the present horizontal line, the display panel including a plurality of vertical portions extended along a vertical direction and arranged in a horizontal direction (the plurality of vertical portions including a vertical portion), generating correction data of the present horizontal line by the vertical portion utilizing the source voltage level of the present horizontal line determined by the vertical portion, generating a source voltage of the present horizontal line by the vertical portion utilizing the source voltage level of the horizontal line determined by the vertical portion, and driving the display panel by the vertical portion utilizing the correction data and the source voltage of the present horizontal line.