Abstract:
A display apparatus includes a display panel and a touch sensing unit disposed on the display panel. The touch sensing unit includes a touch sensor and a first pressure sensor. The touch sensor includes a first touch electrode layer and a second touch electrode layer disposed on the first touch electrode layer. The first pressure sensor includes: a transmission pressure electrode, a sensing pressure electrode separated from the transmission pressure electrode, and a piezoresistive pattern contacting each of the transmission pressure electrode and the sensing pressure electrode. Each of the transmission pressure electrode and the sensing pressure electrode is disposed in a same layer as any one of the first touch electrode layer and the second touch electrode layer.
Abstract:
A display apparatus includes a display panel and a touch sensing unit disposed on the display panel. The touch sensing unit includes a touch sensor and a first pressure sensor. The touch sensor includes a first touch electrode layer and a second touch electrode layer disposed on the first touch electrode layer. The first pressure sensor includes: a transmission pressure electrode, a sensing pressure electrode separated from the transmission pressure electrode, and a piezoresistive pattern contacting each of the transmission pressure electrode and the sensing pressure electrode. Each of the transmission pressure electrode and the sensing pressure electrode is disposed in a same layer as any one of the first touch electrode layer and the second touch electrode layer.
Abstract:
An organic light-emitting display device with improved light efficiency includes a plurality of pixel electrodes each corresponding one of at least a first, second, or third pixel; a pixel-defining layer covering an edge and exposing a central portion of the pixel electrodes; an intermediate layer over the pixel electrode and including an emission layer; an opposite electrode over the intermediate layer; and a lens layer over the opposite electrode and including a plurality of condensing lenses each having a circular lower surface. An area of the portion of the pixel electrode exposed by the pixel-defining layer is A, and an area of the lower surface of the condensing lens is B. For the first pixel, a ratio B/A ranges from about 1.34 to about 2.63. For the second pixel, B/A ranges from about 1.43 to about 3.00, For the third pixel, B/A ranges from about 1.30 to about 2.43.
Abstract:
An organic light-emitting display device with improved light efficiency includes a plurality of pixel electrodes each corresponding one of at least a first, second, or third pixel; a pixel-defining layer covering an edge and exposing a central portion of the pixel electrodes; an intermediate layer over the pixel electrode and including an emission layer; an opposite electrode over the intermediate layer; and a lens layer over the opposite electrode and including a plurality of condensing lenses each having a circular lower surface. For the first pixel, a ratio B/A ranges from about 1.34 to about 2.63. For the second pixel, B/A ranges from about 1.43 to about 3.00, For the third pixel, B/A ranges from about 1.30 to about 2.43. An area of the portion of the pixel electrode exposed by the pixel-defining layer is A, and an area of the lower surface of the condensing lens is B.
Abstract:
An organic light-emitting display device with improved light efficiency includes a plurality of pixel electrodes each corresponding one of at least a first, second, or third pixel; a pixel-defining layer covering an edge and exposing a central portion of the pixel electrodes; an intermediate layer over the pixel electrode and including an emission layer; an opposite electrode over the intermediate layer; and a lens layer over the opposite electrode and including a plurality of condensing lenses each having a circular lower surface. An area of the portion of the pixel electrode exposed by the pixel-defining layer is A, and an area of the lower surface of the condensing lens is B. For the first pixel, a ratio B/A ranges from about 1.34 to about 2.63. For the second pixel, B/A ranges from about 1.43 to about 3.00, For the third pixel, B/A ranges from about 1.30 to about 2.43.
Abstract:
An organic light emitting transistor includes a substrate, a first insulating layer on the substrate, an auxiliary gate electrode between the substrate and the first insulating layer, the auxiliary gate electrode corresponding to a first area, a switching gate electrode between the substrate and the first insulating layer, the switching gate electrode corresponding to a second area defined adjacent to at least one side of the first area, the switching gate electrode being insulated from the auxiliary gate electrode, a source electrode on the first insulating layer, the source electrode corresponding to the second area, a semiconductor layer on the first insulating layer, the semiconductor layer corresponding to at least the first area and the semiconductor layer being connected to the source electrode, a drain electrode corresponding to at least the first area, and a light emitting layer interposed between the drain electrode and the semiconductor layer.
Abstract:
An organic light-emitting display device with improved light efficiency includes a plurality of pixel electrodes each corresponding one of at least a first, second, or third pixel; a pixel-defining layer covering an edge and exposing a central portion of the pixel electrodes; an intermediate layer over the pixel electrode and including an emission layer; an opposite electrode over the intermediate layer; and a lens layer over the opposite electrode and including a plurality of condensing lenses each having a circular lower surface. An area of the portion of the pixel electrode exposed by the pixel-defining layer is A, and an area of the lower surface of the condensing lens is B. For the first pixel, a ratio B/A ranges from about 1.34 to about 2.63. For the second pixel, B/A ranges from about 1.43 to about 3.00, For the third pixel, B/A ranges from about 1.30 to about 2.43.
Abstract:
An electronic apparatus includes an infrared ray module, a camera module, and a display module including an active area through which an image is displayed and a non-active area adjacent to the active area and including a high transmittance area and a low transmittance area which are defined in the active area. The high transmittance area includes a first transmission area and a second transmission area, the camera module overlaps the first transmission area, and the infrared ray module overlaps the second transmission area.