Abstract:
A display panel includes an amorphous silicon gate driver in which a lower voltage than the gate-off voltage output from the gate driver is applied to an adjacent stage as a low voltage transmission signal.
Abstract:
A display panel driving apparatus includes a user position data output part and a move control part. The user position data output part receives user image data and outputs user position data based on the user image data. The user image data is generated by photographing a user. The user position data is generated by mapping a position of the user to a display panel. The move control part compares a plurality of set area data with the user position data and outputs a move control signal based on the comparison of the user position data and the set area data. The set area data is set to the display panel. The move control signal controls a movement of the display panel.
Abstract:
A display panel includes an amorphous silicon gate driver in which a lower voltage than the gate-off voltage output from the gate driver is applied to an adjacent stage as a low voltage transmission signal.
Abstract:
A display panel includes an amorphous silicon gate driver in which a lower voltage than the gate-off voltage output from the gate driver is applied to an adjacent stage as a low voltage transmission signal.
Abstract:
A liquid crystal display includes: an insulating substrate; gate lines and data lines disposed on the insulating substrate; pixels disposed on the substrate substantially in a matrix form, each pixel including a thin film transistor connected to a corresponding gate line of the gate lines and a corresponding data line of the data lines, a first electrode disposed on the thin film transistor, and a second electrode disposed on the first electrode; a first insulating layer disposed on the gate lines, the data lines and the thin film transistor, and under the first electrode; and a second insulating layer disposed between the first electrode and the second electrode, in which each of the first insulating layer and the second insulating layer include an inorganic insulating layer, and a thickness of the first insulating layer is greater than a thickness of the second insulating layer.
Abstract:
A display panel includes an amorphous silicon gate driver in which a lower voltage than the gate-off voltage output from the gate driver is applied to an adjacent stage as a low voltage transmission signal.
Abstract:
A touch barrier panel having a touch sensing capability and a 3-dimensional image display capability is disposed on a display panel such that manufacturing cost may be reduced and the thickness thereof is relatively thin. Also, the negative liquid crystal that is not affected by the vertical electric field is used such that a mode change speed and response speed may be improved.
Abstract:
A display panel includes an amorphous silicon gate driver in which a lower voltage than the gate-off voltage output from the gate driver is applied to an adjacent stage as a low voltage transmission signal.
Abstract:
A display panel driving apparatus includes a user position data output part and a move control part. The user position data output part receives user image data and outputs user position data based on the user image data. The user image data is generated by photographing a user. The user position data is generated by mapping a position of the user to a display panel. The move control part compares a plurality of set area data with the user position data and outputs a move control signal based on the comparison of the user position data and the set area data. The set area data is set to the display panel. The move control signal controls a movement of the display panel.
Abstract:
A display panel includes an amorphous silicon gate driver in which a lower voltage than the gate-off voltage output from the gate driver is applied to an adjacent stage as a low voltage transmission signal.