ROBUST KEYPOINT FEATURE SELECTION FOR VISUAL SEARCH WITH SELF MATCHING SCORE
    1.
    发明申请
    ROBUST KEYPOINT FEATURE SELECTION FOR VISUAL SEARCH WITH SELF MATCHING SCORE 有权
    强大的键盘特征选择,用于自拍匹配的视觉搜索

    公开(公告)号:US20140185941A1

    公开(公告)日:2014-07-03

    申请号:US14101047

    申请日:2013-12-09

    CPC classification number: G06K9/6211 G06K9/4671

    Abstract: To improve feature selection accuracy during a visual search, interest points within a query image are two-way matched to features in an affine transformed image or otherwise transformed version of the query image. A user device implements a method for selecting local descriptors in the visual search. The method includes: detecting a first set of interest points for the original image; computing an affine transform matrix; computing a new image as a transformation of the original image using the affine transform matrix; detecting a second set of interest points from the and new image; performing a two-way matching between the first set of interest points and the second set of interest points; sorting matching pairs according to a specified self-matching score (SMS); assigning an infinite value to SMS of unmatched interest points from the original image; selecting the interest points based on SMS. Significant performance gains reduce false positive matches.

    Abstract translation: 为了在视觉搜索期间提高特征选择精度,查询图像内的兴趣点与仿射变换图像中的特征或查询图像的其他变换版本进行双向匹配。 用户设备实现在视觉搜索中选择本地描述符的方法。 该方法包括:检测原始图像的第一组兴趣点; 计算仿射变换矩阵; 使用仿射变换矩阵计算新图像作为原始图像的变换; 从新图像检测第二组兴趣点; 执行第一组兴趣点与第二组兴趣点之间的双向匹配; 根据指定的自匹配分数(SMS)对匹配对进行排序; 从原始图像向无缝匹配的兴趣点的SMS分配无限值; 基于短信选择兴趣点。 显着的业绩增益减少假阳性匹配。

    Robust keypoint feature selection for visual search with self matching score
    2.
    发明授权
    Robust keypoint feature selection for visual search with self matching score 有权
    强大的关键点特征选择用于自我匹配得分的视觉搜索

    公开(公告)号:US09235780B2

    公开(公告)日:2016-01-12

    申请号:US14101047

    申请日:2013-12-09

    CPC classification number: G06K9/6211 G06K9/4671

    Abstract: To improve feature selection accuracy during a visual search, interest points within a query image are two-way matched to features in an affine transformed image or otherwise transformed version of the query image. A user device implements a method for selecting local descriptors in the visual search. The method includes: detecting a first set of interest points for the original image; computing an affine transform matrix; computing a new image as a transformation of the original image using the affine transform matrix; detecting a second set of interest points from the and new image; performing a two-way matching between the first set of interest points and the second set of interest points; sorting matching pairs according to a specified self-matching score (SMS); assigning an infinite value to SMS of unmatched interest points from the original image; selecting the interest points based on SMS. Significant performance gains reduce false positive matches.

    Abstract translation: 为了在视觉搜索期间提高特征选择精度,查询图像内的兴趣点与仿射变换图像中的特征或查询图像的其他变换版本进行双向匹配。 用户设备实现在视觉搜索中选择本地描述符的方法。 该方法包括:检测原始图像的第一组兴趣点; 计算仿射变换矩阵; 使用仿射变换矩阵计算新图像作为原始图像的变换; 从新图像检测第二组兴趣点; 执行第一组兴趣点与第二组兴趣点之间的双向匹配; 根据指定的自匹配分数(SMS)对匹配对进行排序; 从原始图像向无缝匹配的兴趣点的SMS分配无限值; 基于短信选择兴趣点。 显着的业绩增益减少假阳性匹配。

    TWO WAY LOCAL FEATURE MATCHING TO IMPROVE VISUAL SEARCH ACCURACY
    3.
    发明申请
    TWO WAY LOCAL FEATURE MATCHING TO IMPROVE VISUAL SEARCH ACCURACY 审中-公开
    两路本地功能匹配提高视觉搜索精度

    公开(公告)号:US20140195560A1

    公开(公告)日:2014-07-10

    申请号:US14060314

    申请日:2013-10-22

    CPC classification number: G06F16/583

    Abstract: To improve precision of visual search processing, SIFT points within a query image are forward matched to features in each of a plurality of repository images and SIFT points within each repository image are backward matched to features within the query image. Forward-only, backward-only and forward-and-backward matches may be weighted differently in determining an image match. Two way matching may be triggered by query image bit rate in excess of a threshold or by a sum of weighted distances between matching points exceeding a threshold. Significant performance gains in eliminating false positive matches are achieved.

    Abstract translation: 为了提高视觉搜索处理的精度,查询图像内的SIFT点与多个存储库图像中的每一个中的特征向前匹配,并且每个储存库图像内的SIFT点与查询图像内的特征反向匹配。 在确定图像匹配时,仅向前,向后和向前和向后的匹配可以被不同地加权。 可以通过超过阈值的查询图像比特率或超过阈值的匹配点之间的加权距离之和来触发双向匹配。 实现消除假阳性匹配的显着性能提升。

    VISUAL SEARCH ACCURACY WITH HAMMING DISTANCE ORDER STATISTICS LEARNING
    4.
    发明申请
    VISUAL SEARCH ACCURACY WITH HAMMING DISTANCE ORDER STATISTICS LEARNING 审中-公开
    可视化搜索精度与汉堡距离订单统计学习

    公开(公告)号:US20140201200A1

    公开(公告)日:2014-07-17

    申请号:US14153907

    申请日:2014-01-13

    Abstract: Global descriptors for images within an image repository accessible to a visual search server are compared based on order statistics processing including sorting (which is a non-linear transform) and heat kernel matching. Affinity scores are computed for Hamming distances between Fisher vector components corresponding to different clusters of global descriptors from a pair of images and normalized to [0, 1], with zero affinity scores assigned to non-active cluster pairs. Linear Discriminant Analysis is employed to determine a sorted vector of affinity scores to obtain a new global descriptor. The resulting global descriptors produce significantly more accurate matching.

    Abstract translation: 基于包括排序(其是非线性变换)和热核心匹配的顺序统计处理来比较可视搜索服务器可访问的图像存储库内的图像的全局描述符。 计算对应于来自一对图像的全局描述符的不同簇的Fisher向量分量之间的汉明距离的归一化分数,并归一化为[0,1],其中零亲和度分数分配给非活动簇对。 线性判别分析用于确定亲和度分数的排序向量以获得新的全局描述符。 所产生的全局描述符产生明显更准确的匹配。

Patent Agency Ranking