Abstract:
A method and apparatus for training a language model, include generating a first training feature vector sequence and a second training feature vector sequence from training data. The method is configured to perform forward estimation of a neural network based on the first training feature vector sequence, and perform backward estimation of the neural network based on the second training feature vector sequence. The method is further configured to train a language model based on a result of the forward estimation and a result of the backward estimation.
Abstract:
A neural network training method based on training data, includes receiving training data including sequential data, and selecting a reference hidden node from hidden nodes in a neural network. The method further includes training the neural network based on remaining hidden nodes obtained by excluding the reference hidden node from the hidden nodes, and based on the training data, the remaining hidden nodes being connected with hidden nodes in a different time interval, and a connection between the reference hidden node and the hidden nodes in the different time interval being ignored.