摘要:
In one aspect, a mechanism is provided to resolve the Iub transport network congestion in the uplink direction by using the transmission window of the RLC to control the transfer rate of the flow. The RNC (110) detects the Iub TN congestion for the flow in the uplink. The EUL flow control running in the RNC (110) calculates the RLC transmission window size for the UE for the flow and the calculated RLC transmission window size is signaled to the peer RLC entity in the UE (130) through an RLC STATUS PDU.
摘要:
In one aspect, a mechanism is provided to resolve the Iub transport network congestion in the uplink direction by using the transmission window of the RLC to control the transfer rate of the flow. The RNC (110) detects the Iub TN congestion for the flow in the uplink. The EUL flow control running in the RNC (110) calculates the RLC transmission window size for the UE for the flow and the calculated RLC transmission window size is signaled to the peer RLC entity in the UE (130) through an RLC STATUS PDU.
摘要:
In one aspect, a method and apparatus are disclosed that can provide an efficient and robust HSDPA flow control solution. The RNC (110) can receive information regarding allowed data rate from the Node-B (120) for a data flow in a downlink direction. Based on the received data rate information and optionally based on other predetermined considerations, the RNC (110) adjusts the RLC PDU transmission window size for the data flow. When the RLC PDU transmission window is properly sized, reaction to congestion can be performed quicker relative to the existing Iub flow control.
摘要:
The present invention proposes a solution in the area of HSDPA flow control. It proposes an improvement to transport network congestion detection and avoidance. The improvement proposes to use a measurement of incoming bitrate to determine the reduction of bitrate after a transport network congestion event. The advantage is that high bitrate reduction is only used when it is necessary; otherwise only small bitrate reduction is used, which results in small oscillation, and consequently higher transport network utilization.
摘要:
A mechanism is provided to resolve the Iub transport network congestion efficiently for HSDPA by dynamic adjustment of the transmit window of the RLC. The RLC protocol is extended with congestion control functionality. The Iub TN and Uu congestion detection method in the Node-B (120) signals the congestion to the RNC (110), and this congestion indication is used by RLC to react on the congestion situation. In the RNC (110), the transmission window of the RLC is adjusted to control the flow rate. When congestion is detected, the RLC transmission window size is decreased. When there is no congestion, then the RLC transmission window size is increased automatically. Different types of congestion are distinguished and are handled in different ways. Alternatively, congestion control is achieved without any modification in the RLC layer from the existing standard. Here, RLC STATUS PDUs are used to change the RLC transmission window size.
摘要:
The present invention proposes a solution in the area of HSDPA flow control. It proposes an improvement to transport network congestion detection and avoidance. The improvement proposes to use a measurement of incoming bitrate to determine the reduction of bitrate after a transport network congestion event. The advantage is that high bitrate reduction is only used when it is necessary; otherwise only small bitrate reduction is used, which results in small oscillation, and consequently higher transport network utilization.
摘要:
A mechanism is provided to resolve the Iub transport network congestion efficiently for HSDPA by dynamic adjustment of the transmit window of the RLC. The RLC protocol is extended with congestion control functionality. The Iub TN and Uu congestion detection method in the Node-B (120) signals the congestion to the RNC (110), and this congestion indication is used by RLC to react on the congestion situation. In the RNC (110), the transmission window of the RLC is adjusted to control the flow rate. When congestion is detected, the RLC transmission window size is decreased. When there is no congestion, then the RLC transmission window size is increased automatically. Different types of congestion are distinguished and are handled in different ways. Alternatively, congestion control is achieved without any modification in the RLC layer from the existing standard. Here, RLC STATUS PDUs are used to change the RLC transmission window size.
摘要:
The invention discloses a method for detecting and controlling traffic congestion in a wireless telecommunications system (100, 300, 400) comprising at least a first node (130, 330, 430) such as a Radio Base Station, and at least one second node (110, 310, 410) such as a Radio Network Controller, the system also comprising a Transport Network, TN (120, 320, 420), for conveying traffic between said first and second nodes, in which system (100, 300, 400) the traffic can comprise one or more flow. The method comprises the use of one flow control function (315, 415) per each of said flows, said one flow control function (315, 415) comprising a congestion detection and control function. In addition, the congestion detection function acts to reduce the traffic on said flow before the system becomes congested.
摘要:
In one aspect, a method and apparatus are disclosed that can provide an efficient and robust HSDPA flow control solution. The RNC (110) can receive information regarding allowed data rate from the Node-B (120) for a data flow in a downlink direction. Based on the received data rate information and optionally based on other predetermined considerations, the RNC (110) adjusts the RLC PDU transmission window size for the data flow. When the RLC PDU transmission window is properly sized, reaction to congestion can be performed quicker relative to the existing Iub flow control.
摘要:
The invention discloses a method (200, 300, 400) for traffic control in a cellular telephony system (100) comprising a number of cells, each cell comprising at least one Radio Base Station, RBS, (170). The system (100) comprises at least one Radio Network Controller, RNC, (110 130 150), for the control of a number of Radio Base stations. The traffic between an RBS and an RNC comprises a number of flows. The invention is intended for the control of flows from the Radio Base Stations to their RNC. The method uses one control function for each flow from each of said Radio Base Stations, and also comprises a congestion detection function (220) which detects the presence or absence of congestion in the traffic from an RBS to an RNC, and which, upon detection of congestion reduces the bit rate of the congested traffic, and in the absence of congestion, increases the bit rate of the previously congested traffic.